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1. Introduction

An important problem in actuarial science and mathematical finance, as well
as many other quantitative fields, is to model the statistical behavior of “extreme
values” of random quantities. Consider, for example, the losses incurred in succes-
sive weeks by a certain portfolio of stocks. What can we say about the maximum
weekly loss that will be incurred by a given stock in the portfolio, over a fixed time
horizon? And, looking at the portfolio as a whole, what can we say about the de-
pendence between the maximum weekly losses in the portfolio? If one stock yields
an exceptionally high maximum loss over the coming year, say, should we expect
the other stocks in the portfolio to co-move in a similar fashion? Or is it safe to
treat the extreme losses by different stocks as independent occurrences? Clearly,
questions like these are very relevant from a risk management point of view.

2. Extreme Values and Tail Dependence

To make the setting more precise, let us consider a portfolio of two stocks only,
with weekly losses X1, X2, . . . for stock 1 and Y1, Y2, . . . for stock 2. (Gains can
be treated as “negative losses.”) For the sake of simplicity, let’s assume that the
successive pairs of losses (X1, Y1), (X2, Y2), . . . are independent and identically dis-
tributed random vectors, with a common bivariate distribution function F . Suppose
the Xi’s have distribution F1 and the Yi’s have distribution F2. Note that we do
not assume independence between Xi and Yi; the joint distribution F determines
their dependence structure.

The questions posed in the introduction can be answered by studying the statis-
tical behavior of the pair of maximum losses

(1)
(

max{X1, . . . , Xn},max{Y1, . . . , Yn}
)

over a long time horizon n. Now, the distribution of the random vector (1) will not
be very interesting without some form of normalization because each component will
simply converge in probability to the right endpoint of the corresponding marginal
distribution as n gets bigger. So let us instead consider the pair of normalized
maximum losses

(2)

(
max{X1, . . . , Xn} − b1(n)

a1(n)
,

max{Y1, . . . , Yn} − b2(n)

a2(n)

)
,

where a1, b1, a2, b2 denote deterministic normalizing sequences.
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Extreme value theory, the branch of statistics that deals with the behavior of
sample maxima (among other things), tells us that when these normalizing se-
quences are chosen properly, the random vector (2) converges to a non-trivial dis-
tribution function G of a special type. (Note: Such a convergence is not guaranteed
for all distribution functions F , but for a fairly large class of them. We assume
that our underlying F belongs to that large class.) In particular, the marginal
distributions of G have the so-called generalized extreme value form

(3) Gj(x) = exp{−(1 + γjx)−1/γj}, 1 + γjx > 0, j = 1, 2,

for some real numbers γ1, γ2, and the dependence structure between these marginal
distributions is captured in full by the so-called tail copula, defined by

(4) R(x, y) = lim
t→∞

tP (F1(X1) > 1− x/t, F2(Y1) > 1− y/t), (x, y) ∈ [0,∞)2.

We conclude that the asymptotic joint distribution G of the normalized maxima
in (2) is completely determined by the marginal parameters γj in (3) and the tail
copula (4).

3. Goodness-of-Fit testing for Tail Copulas

In practice, often a parametric model is used for the unknown tail copula R.
That is, R is simply assumed to belong to some parametric family R of tail copulas
(such as the logistic family), which reduces the problem of estimating R into a
simpler problem of estimating a parameter. Consequently, the problem of testing
whether a particular parametric tail copula model fits the data well or not becomes
important.

In [1], we propose a novel approach for constructing goodness-of-fit tests for
parametric tail copula models. To be precise, suppose that we want to test the
goodness-of-fit of the parametric family R = {Rθ : θ ∈ Θ} to the bivariate data
at hand, where Θ denotes some (possibly multi-dimensional) parameter space. As-
suming that the unknown tail copula R indeed belongs to R (the null hypothesis),
we can estimate R in two different ways: parametrically, by estimating θ, and
semi-parametrically, by estimating the marginal parameters aj , bj , γj for j = 1, 2
and using empirical distribution functions. Let’s call these two estimators Rθ̂ and

R̂n, respectively. Under the null hypothesis, both estimators are estimating the
same object, and they should get “closer” to each other as n gets larger. So we
consider the bivariate process ηn, which is simply the properly scaled difference

between Rθ̂ and R̂n. We show that ηn converges weakly to some bivariate Gauss-
ian process that we characterize explicitly. More importantly, we also show that a
proper transformation of ηn, say τ(ηn), converges weakly to a standard bivariate
Wiener process.

Thus we construct a bivariate process τ(ηn) from the data which is approxi-
mately a standard Wiener process if the null hypothesis is true, i.e. if R is a good
model for the tail dependence of the data at hand. So we now have a nice way of
assessing the goodness-of-fit of R to the data: check if the observed sample path
for τ(ηn) is consistent with the statistical behavior of a standard Wiener process
or not. There are standard test statistics one can use for such a comparison, such
as Kolmogorov–Smirnov (KS), Cramér–von Mises (CvM) and Anderson–Darling
(AD) test statistics.
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A critical feature of this approach to goodness-of-fit testing is that it is “asymp-
totically distribution free,” that is, the asymptotic distribution of a given test statis-
tic is always the same when the null hypothesis is true, no matter which particular
parametric family R we are testing for and what the true value of the parameter
θ happens to be. So benchmark distribution tables for test statistics only need to
be computed once and for all, as opposed to being recomputed again and again for
different null hypotheses, which is the case in competitor approaches.

4. Implementation Using R

To assess the finite-sample performance of our convergence results, we have con-
ducted a Monte Carlo simulation study using the statistical software R. We started
by selecting a few different tail copula models to serve as our null hypotheses. For
each of these models, we generated 300 data sets of size 1500 from a bivariate
distribution F0 for which the model is correct. From each generated data set, we
constructed the process τ(ηn) on a suitable bivariate grid, and computed the values
of three different test statistics (KS, CvM, AD) from this discretized sample path.
This gave us an empirical distribution of 300 values for each of the three test statis-
tics. We compared these empirical distributions with the empirical distributions of
the same test statistics generated from 10,000 true standard Wiener process paths.
We observed a very good match between the two sets of empirical distributions,
as predicted by our convergence results. The PP-plots (in black) for the three test
statistics, for one of the models we considered, are reprinted in Fig. 1 below. They
stay very close to the 45◦ line, which verifies that the compared empirical distri-
butions agree to a remarkable extent. We also generated 100 samples of size 1500
from a judiciously chosen alternative distribution Fa that does not satisfy the null
hypothesis model, and computed the same test statistics from these samples. The
resulting PP-plots (in red) can be seen to deviate quite significantly from the 45◦

line, suggesting that tests based on our approach have high power. The R script we
used for the simulation study is available as an appendix to [1].
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Figure 1. PP-plots for KS, CvM and AD test statistics, for one
of the parametric models considered.

5. Conclusion

In [1], we propose a novel approach for determining the right tail dependence
model, an important problem in actuarial and financial risk modeling. We hope
practitioners will exploit it to improve their risk modeling techniques.



4 SAMI UMUT CAN AND ROGER J. A. LAEVEN

References

[1] Can, S.U., Einmahl, J.H.J., Khmaladze, E.V. and Laeven, R.J.A. (2015). Asymptotically
Distribution-Free Goodness-of-Fit Testing for Tail Copulas. Ann. Statist. 43 878-902. DOI:

10.1214/14-AOS1304.


