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The general problem

Consider the randomly weighted sum
∑n

i=1 θiXi, with

• {Xn, n = 1,2, . . .} a sequence of i.i.d. r.v.’s;

• {θn, n = 1,2, . . .} a sequence of non-negative dependent

r.v.’s;

• the sequences {Xn, n = 1,2, . . .} and {θn, n = 1,2, . . .} being

independent.

We want to investigate its tail probability and functionals (risk

measures) thereof.



The general problem: interpretation

• Xn: represents the net loss or payoff of an insurance or

financial product (or portfolio, line of business, conglom-

erate,...) in (development) year n.

– Is assumed to be independent across time.

– In insurance, typically heavy-tailed.

• θn: represents the stochastic discount factor for year n.

– Case 1: θn = Y1 · · ·Yn, with {Yn, n = 1,2, . . .} a sequence

of non-negative i.i.d. r.v.’s.

– Case 2: no assumption on the dependence structure.

Includes e.g., GARCH models.



The general problem: possible solutions

• Monte Carlo simulation;

• Easy-computable bounds or approximations à la Roger &

Shi (1995);

• Asymptotics.



Classes of heavy-tailed distributions [1]

• Class S:

lim
x→+∞

F ∗n(x)/F (x) = n,

for any (or equivalently, for some) n ≥ 2.

• Class L:

lim
x→+∞

F (x + y) /F (x) = 1,

for any real number y (or equivalently, for y = 1).



Classes of heavy-tailed distributions [2]

• Class D:

lim sup
x→+∞

F (xy)

F (x)
< +∞,

for any 0 < y < 1 (or equivalently for some 0 < y < 1).

• D∩L ⊂ S ⊂ L; see e.g., Embrechts, Klüppelberg & Mikosch

(1997).



Classes of heavy-tailed distributions [3]

• Class R−α:

lim
x→+∞

F (xy)

F (x)
= y−α,

for any y > 0.

• Class R−∞:

lim
x→+∞

F (xy)

F (x)
=

{
0, y > 1;
+∞, 0 < y < 1.



Asymptotic results [1]

Let

• {Yn, n = 1,2, . . .} i.i.d. supported on (0,+∞);

• Zn := Y1Y2 · · ·Yn;

• 0 < an < +∞, n = 1,2, . . .

If FY ∈ S ∩R−∞, then it holds for each n = 1,2, . . . that

P

 n∑
i=1

aiZi > x

 ∼
n∑

i=1

P (aiZi > x) .



Asymptotic results [2]

Let

• {Xn, n = 1,2, . . .} i.i.d. supported on (−∞,+∞).

If FX ∈ D∩L and FY ∈ R−∞, then it holds for each n = 1,2, . . .

that

P

 n∑
i=1

(ai + Xi)Zi > x

 ∼
n∑

i=1

P ((ai + X)Zi > x)

and that

P

 n∑
i=1

(aiXi)Zi > x

 ∼
n∑

i=1

P ((aiX)Zi > x) .



Asymptotic results [3]

If X and Y follow a lognormal law with σY < σX, then it holds

for each n = 1,2, . . . that

P

 n∑
i=1

(ai + Xi)Zi > x

 ∼
n∑

i=1

P ((ai + X)Zi > x)

and that

P

 n∑
i=1

(aiXi)Zi > x

 ∼
n∑

i=1

P ((aiX)Zi > x) .



Asymptotic results [4]

Let

• {θn, n = 1,2, . . .} non-negative and dependent.

If FX ∈ R−α for some α > 0 and there exists some δ > 0 such

that E[θα+δ
i ] < +∞ for each 1 ≤ i ≤ n, then it holds for each

n = 1,2, . . . that

P

 n∑
i=1

θiXi > x

 ∼
n∑

i=1

P (θiX > x)

∼ F (x)
n∑

i=1

E[θα
i ].

Holds even uniformly for n = 1,2, . . .; see Wang (2005).



Example: Stop-loss premium and Value-at-Risk [1]

Let S̃n =
∑n

i=1 θiXi. Then

• Stop-loss premium:

E[(S̃n − d)+] ≈
n∑

i=1

E[(θiX − d)+].

• VaR:

inf{s : F
S̃n

(s) ≥ p} ≈

inf

s :
n∑

i=1

F θiX(s) ≤ 1− p

 .



Example: Stop-loss premium and Value-at-Risk [2]

Furthermore, let FX ∈ R−α for some α > 0. Then

• Stop-loss premium:

E[(S̃n − d)+] ≈ E[(X − d)+]
n∑

i=1

E[θα
i ].

• VaR:

inf{s : F
S̃n

(s) ≥ p} ≈

inf

s : FX(s)
n∑

i=1

E[θα
i ] ≤ 1− p

 .



Example: Stop-loss premium and Value-at-Risk [3]

• θn = Y1 · · ·Yn, i.i.d.: E[θα
n] = E[Y α]n.

• (θ1, . . . , θn) =d LEn(µn,Σn, φ): E[θα
n] is explicit; see e.g.,

Fang, Kotz & Ng (1990) and Owen & Rabinovitch (1983).

• (θ1, . . . , θn) =d LNVMMn(µn, βn,Σn, G): E[θα
n] is explicit;

see e.g., Barndorff-Nielsen (1997).



A numerical illustration

d “Real” Appr. Diff. Rdiff. p “Real” Appr. Diff. Rdiff.
30 1.75 1.56 0.19 11% 0.975 36 30 6 17%
40 1.48 1.35 0.13 9% 0.99 63 57 6 10%
60 1.18 1.11 0.07 6% 0.995 96 90 6 6%
80 1.01 0.96 0.05 5% 0.999 274 265 9 3%
100 0.90 0.86 0.04 4%
150 0.72 0.70 0.02 3%
200 0.62 0.61 0.01 2%
250 0.56 0.55 0.01 2%
300 0.51 0.50 0.01 2%

Notes: “Real” versus approximate values of stop-loss premiums and quan-
tiles for Pareto losses and i.i.d. lognormal stochastic discount factors. Fixed
parameter values: n = 5, α = 1.5, µ = −0.04, σ = 0.10 and 5,000,000 sim-
ulations.

Analytic approximations!
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