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Summary  We consider the relation between mortality hazards and life expectancy for men and 
women in the Netherlands and in England. Halving the lifetime mortality hazards increases life 
expectancy at birth by only 9%. 
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1. Introduction 
 

Epidemiologists express the effect of covariates on individual mortality in hazard ratios, 
actuaries and demographers in differences in life expectancies. The former are appropriate when the 
covariates apply to a limited age interval, the latter when we are dealing with lifetime characteristics. It 
is clear that the two are related: reduced hazards mean increasing life expectancies, increased 
mortality rates a shorter life. The question is what this relation is. 

A few life distributions, like the exponential and the Weibull, permit an analytical expression 
for the mean – i.e. the life expectancy – in terms of the hazard, but these distributions do not apply to 
the entire human life span. Apart from some experiments with a Makeham-Gompertz distribution we 
proceed by numerical assessment, calculating the impact of variations in mortality rates from actuarial 
mortality tables for the Netherlands and for England [1], [2]. These mortality tables record q(t), the 
probability that a person who attains the age of t years dies before the next birthday. The density of 
life durations f(t) and the mean life expectancy are easily obtained. One may then vary all baseline q(t) 
in the same proportion and recalculate the life expectancy. Details of these calculations are given in 
the appendix. 

For the latter part of the life distribution we shall also adopt a Makeham-Gompertz distribution 
and proceed by direct calculation of the life expectancies using numerical integration. Details are 
again given in the appendix.  

  

2. Permanent changes in mortality rates  

We first consider the effect of lifetime proportional variation of the mortality rate, in line with 
the proportional hazards model. The first example that comes to mind is the difference in gender: 
generally, women live considerably longer than men and they must have lower mortality rates, at least 
over a substantial part of their lifetime. But female and male hazards are not in constant proportion: 
the ratio of female to male mortality (though predominantly much smaller than 1) varies considerably 
with age.   

 Figure 1. Ratio of female to male mortality rates by age (England 2002) 
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Another individual characteristic that may reduce mortality rates over the entire lifetime is 
superior intelligence. Like the traditional indicators of Socio-Economic Status – education, occupation 
and income – intelligence has been shown in many independent studies to reduce individual mortality, 
with a standardized hazard ratio of about  0,8 – see Calvin et al [3]. In many studies intelligence is 
recorded at ages 10 or 12, and this is found to affect adult mortality in advanced age, up to seventy 
years and beyond. We may therefore assume that intelligence scores (or at least intelligence 
differentials) are a permanent individual characteristic that persists over the entire lifetime. This has 
been confirmed by Deary et al [4]; for a different view see Ramsden et al [5]. 

A standardized hazard ratio of 0,8 means that an intelligence differential of one standard 
deviation reduces mortality hazards by 20%. Most intelligence test scores are calibrated at mean 1 
and standard deviation 0,15; assuming a Normal distribution, an individual intelligence of one 
standard deviation above the mean then means a ranking at the 84th percentile of the intelligence 
distribution. If linear extrapolation is warranted (a moot point), a position at the upper 1% of the 
distribution would correspond to 2,08 standard deviations, and imply a mortality hazard of 42% below 
the average.  

Such reduced mortality hazards must mean a longer expected life. The effect of increasing or 
reducing q(t) in actuarial tables over the entire lifespan by various multiplicative factors or ratios is 
shown in Table 1 and illustrated in Figure 2. This effect is smaller than one would expect: halving the 
lifetime mortality rates increases the life expectancy by only 9%, doubling mortality rates reduces life 
expectancy by a similar percentage.  

Table 1. Life expectancy (in years) for various lifetime multipliers of mortality hazards 
    (calculated from actuarial mortality tables) 

 

 

  

Ratio Netherlands, M  Netherlands, F  England, M England, F 
     
0,5      83,57     87,81    84,84     88,52 
     
0,8      78,59     83,05    80,78     84,57 
     
0,9      77,35     82,00    79,52     83,41 
     
1      76,25     80,96    78,36     82,36 
     
1,1      75,25      80,02    77,31     81,41 
     
1,2      74,33     79,15    76,34     80,54 
     
1,5      71,98     76,89     73,83     78,26 
     
2,0      68,89     73,90     70,55     75,26 
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        Figure 2. Effect on life distribution of halving mortality rates (Netherlands, men; 
    calculated from actuarial mortality tables) 

          
 

 

 
  
  
  
  
  
  
  
  
  
  
  
  
   

Figures 3 and 4 show the relation between these life expectancies and the logarithm of the 
overall mortality multiplier for the Dutch and English data, women and men. The relation is almost 
linear – more so in the Netherlands than in England - , with a slope of -10 (-10,28 in the Netherlands,  
-10,03 in England) of life expectancy (in years) in respect of the natural log(mortality rate multiplier).  

 

  Figure 3. Life expectancy as a function of log mortality rate multiplier. 
     (Netherlands, women and men) 
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  Figure 4. Life expectancy as a function of log mortality rate multiplier. 
      (England, women and men)  

 

 

2. Temporary changes in mortality rates  

 We may also consider the effect of temporary variation of the mortality rate, induced by  
temporary changes in covariates, such as the late advent of affluence or of poverty. In a simplified 
scheme we assume that mortality rates are unchanged for the first 45 years of life and thereafter 
permanently changed by the same ratios as before. Table 3 reports the results for the Netherlands, 
and Figure 5 shows that the differences with the earlier outcomes for the full lifetime are quite small – 
the slope of life expectancy to ln(ratio) is -8,80 against -10,28 for lifetime changes. This is no surprise  
as the major part of all deaths occur after middle age.    

Table 3. Life expectancy (in years) for various multipliers of mortality hazards  
    beyond 45 years of age 
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  Netherlands, M   Netherlands, F 

   
0,5       82,59        87,09 
   
0,8       78,23        82,79 
   
0,9       77,17         81,87 
   
1,0       76,25        80,96 
   
1,1       75,15        80,14 
   
1,2       74,67        79,40 
   
1,5       72,77        77,50 
   
2,0       70,39        75,05 
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       Figure 5. Same relation as Figure 3, full life and adult life only  
               (Dutch men) 

 

 

For this upper range of the life distribution we may also make use of integrating a fitted Makeham-
Gompertz continuous density function. The resulting expected lifetimes for Dutch males surviving 
after age 45 against log of PH-factors are shown in Figure 6: we find the same linear relation of life 
expectancy with ln(ratio) as above, with a slope of – 8,79. 

 

       Figure 6. As Figure 5, adult life with continuous density (Dutch men) 
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Appendix. Method of calculation 

Mortality tables 

 The mortality tables considered here provide values of the mortality rate q(t) at age t for t = 0 
to t = 100 (England) or t = 120 (Netherlands). The calculation of the corresponding life expectancy is 
straightforward. With S(t) the fraction surviving at the beginning of age t and f(t) the discrete density of 
the truncated lifetime distribution, we have    

 S(0) = 1, S(t) = S(t-1) (1- q(t-1)) 

 f(t) = S(t+1) – S(t) 

 life expectancy = expectation of f(t) = SUM {(t+0,5) * f(t)} 

From a theoretical point of view it may be better to transform the q(t) into hazards h(t) (and back again) 
and look at the continuous distribution of the life-time, rather than assuming death to occur only 
halfway between birthdays. Then q(t) and h(t) are related as  

    h(t) = -ln(1 – q(t)), 

q(t) = 1 – exp(-h(t)). 

But over much of the age range the difference is small, and so is the effect on life expectancies.   

After middle age q(t) increases with advancing age, and when it attains the value of 1 at age 
t0 this means extinction beyond t0. The life expectancies have therefore been calculated from t = 0 to   
t =t0. In the baseline Dutch tables, q(t) is given up to t = 120, with t0 113 (men) or 115 (women). There 
is of course little empirical evidence of mortality rates at these advanced ages and it is clear that two 
or three q(t) preceding t0 have been obtained by extrapolation. Adjustments are in order when we 
apply multiplicative factors to all q(t): with reduced mortalities we must construct a smooth path to a 
later t0, with increased mortality rates we must adjust values that would otherwise exceed 1. In either 
case some ad hoc extrapolation is needed at the tail end of the distribution. Apart from the extreme 
case where mortality rates are doubled, the life expectancy is not very sensitive to these artifices 
since the fraction surviving that is affected is fairly small. 

The English tables end at t = 100 and have also been extended to t0 by extrapolation.  

Table A1 reports the last age t* with an observed value of q(t), the value of S(t*+1) (the 
fraction surviving at the end of t*), and the extinction age t0, so that the reader can judge what 
proportion of the life distribution is involved in these arbitrary inventions. Predictably the most extreme 
changes and the English statistics fare worst.  

   Table A1. Statistics of extrapolation and smoothing  

  Netherlands, men Netherlands, women    England, men England, women 
Factor     t*,  t0 S(t*+1)   t*, t0   S(t*+1)     t*, t0 S(t*+1)     t*, t0 S(t*+1) 
         
 0,5  110, 115 0,0037 112, 118 0,0039 100, 108 0,1252 100,107 0,1475 
 0,8  110, 114 0,0000 112, 118 0,0001 100, 106 0,0324 100,106 0,0472 
 0,9  110, 114 0,0000 112, 117 0,0000 100, 106 0,0207 100,106 0,0273 
 1,0  110, 113 0,0000 112, 117 0,0000 100, 105 0,0082 100,105 0,0147 
 1,1  110, 113 0,0000 112, 116 0,0000 100, 105 0,0047 100,105 0,0110 
 1,2  110, 113 0,0000 112, 115 0,0000 100, 104 0,0027 100,104 0,0033 
 1,5   110, 112 0,0001 112, 112 0,0000 100, 103 0,0004 100,103 0,0015 
 2,0  103, 104 0,0037 112, 106  0,0000 100, 102 0,0000 100,102 0,0001 
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The Gompertz -Makeham distribution 

 The Gompertz–Makeham law, see [6] and [7], states that the death rate has three parameters 
and can be  summarized by two equations, for the hazard h(t), t>0,  and the survival fraction S(t), viz.   

 h(t) = α + β γt;  

 S(t) = exp{-α.t – (β/logγ)*(γt – 1)}.   

So the hazard rate has a time-independent component α and a geometrically increasing component 
with age. The special case with α=0 is the Gompertz distribution, the refinement involving positive α 
was introduced by ; see [6] and [7]. The following formula holds in general for survival fractions, with 
integration over t>0:   

 life expectancy = ∫S(t)dt. 

There is no analytical expression for the latter integral in case of a Gompertz-Makeham distribution, 
but it can simply be evaluated numerically. This holds as well for the calculation of a conditional 
expected life-time after a certain age, given this age was reached. 

 The Gompertz Law fits the observed deaths in the Dutch male population well. The values of 
the AG-table have in fact been computed from a Gompertz-Makeham distribution with parameters 

 α = 0 

 β = 0,000016443 

 γ = 1,1124 

 Proportional changes in the hazard are expressed by proportional changes in ∝ and β, with 
corresponding changes in S(t). The life expectancy is calculated by numerical integration of the aboce 
expression.  

 Using continuous hazard rates rather than one-year conditional mortality probabilities avoids 
the problem of having to account for a terminal age after which everybody dies. Using the above 
parameters for the Gompertz-Makeham distribution reveals that the linearity of expected terminal age 
against log of the PH-factor extends over an even wider interval than 0,5 to 2,0 as used above; in fact, 
even to values between 1/8 and 8. But such enormous variations are of little practical relevance.  
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