A model of the reserve asset

Zhiguo He (Chicago Booth and NBER)
Arvind Krishnamurthy (Stanford GSB and NBER)
Konstantin Milbradt (Northwestern Kellogg and NBER)

Amsterdam “Safe asset” conference
45 min
Motivation

- US Treasury bonds have been the world reserve asset for a long time
 - Safe asset portfolios tilted towards US Treasury bonds
 - “Convenience yield” on US Treasury bonds; Higher premium in bad states (“negative β”)
 - Despite increasing size of US debt, reserve asset status has persisted
 - Despite deteriorating US fiscal position, US interest rates remain low

- German bund occupies a similar position in the Euro area

- History
 - Gold;
 - UK consol bond pre-WWI;
 - Joint reserve asset: UK and US in interwar period
 - Pre 2009 in Europe: German, French, Italian bonds are all negative β

- Since crisis, many proposals to create a Euro-wide government bond, to serve as a Euro reserve asset
 - But no models of a reserve asset, so no framework to analyze different Eurobond designs
Literature

- International finance, economic history literature on reserve currency
 - Eichengreen (many), Krugman (1984), Frankel (1992)
 - **Store of value**, medium of exchange, unity of account, multiple equilibria

- Shortages of store of value
 - Multiplicity: Samuelson (1958) on money, Diamond (1965) on govt debt
 - No formal models of endogenous determination of which asset is chosen as store of value

- Global games and sovereign debt rollover risk
Model Setup

Investors \((j)\):
- Measure \(1 + f\) of investors with one unit of funds each
- Risk neutral, each investor **must** invest his funds in sovereign debt

Countries/debt \((i)\):
- Two countries, debt size \(s_1 = 1\) and size \(s_2 = s < 1\)
- Fundamental ("surplus") \(s_i\theta_i\)
 - Foreign denominated debt: true surplus plus foreign reserves
 - Domestic denominated debt: true surplus plus any resources CB is willing to provide to forestall a rollover crisis
- Debt of face value of \(s_i\) (exogenous) issued at endogenous price \(p_i\)
- Default if surplus plus bond proceeds insufficient for obligations

\[
\underbrace{s_i\theta_i + s_i p_i}_\text{total funds available} < \underbrace{s_i}_\text{debt obligations}
\]

\(\Rightarrow\) Given price \(p_i\), default decision depends on \(\theta_i\)
- Recovery in default = 0
Multiple equilibria in a special case

- No default if,
 \[s_i p_i \geq s_i (1 - \theta_i) \]

- Suppose sufficient funding for both countries:
 \[
 \underbrace{1 + f}_{\text{total funds available}} \geq \underbrace{(1 - \theta_1) + s_2 (1 - \theta_2)}_{\text{funding needs}}
 \] (1)
Multiple equilibria in a special case

- No default if,
 \[s_i p_i \geq s_i (1 - \theta_i) \]

- Suppose sufficient funding for both countries:
 \[\frac{1 + f}{\text{total funds available}} \geq (1 - \theta_1) + s_2 (1 - \theta_2) \]
 \[(1) \]

Possible equilibria

1. Country 1 is safe (=reserve asset), country 2 defaults:
 \[p_1 = 1 + f, \quad p_2 = 0 \]
 Investor return = \[\frac{1}{1 + f} \]

2. Country 2 is safe (=reserve asset), country 1 defaults:
 \[p_1 = 0, \quad p_2 = 1 + f \]
 Investor return = \[\frac{s}{1 + f} \]

3. Both countries safe, two reserve assets... but unstable
Multiple equilibria

- No default if,
 \[s_i p_i \geq s_i (1 - \theta_i) \]

- Suppose sufficient funding for both countries:
 \[\underbrace{1 + f}_{\text{total funds available}} \geq \underbrace{(1 - \theta_1) + s_2 (1 - \theta_2)}_{\text{funding needs}} \]

Possible equilibria

1. Country 1 is safe (=reserve asset), country 2 defaults:
 \[p_1 = 1 + f, \quad p_2 = 0 \]
 Investors return = \(\frac{1}{1 + f} \)

2. Country 2 is safe (=reserve asset), country 1 defaults:
 \[p_1 = 0, \quad p_2 = 1 + f \]
 Investors return = \(\frac{s}{1 + f} \)

3. Both countries safe, two reserve assets... but unstable

4. If \(s_2 = 0 \), country 1 is safe (Japan?)
Full characterization as function of s, f and θ

Global games technique:

- Unobserved relative fundamentals (higher $\tilde{\delta}$ means country 1 is stronger):

 \[
 1 - \theta_1 = (1 - \theta) \exp (-\tilde{\delta}) ; \\
 1 - \theta_2 = (1 - \theta) \exp (+\tilde{\delta}) .
 \]

- Each investor receives a noisy private signal before investing

 \[
 \delta_j = \tilde{\delta} + \epsilon_j
 \]

- Take $\tilde{\delta} \in [-\bar{\delta}, \bar{\delta}]$ (any cdf, but wide support) and noise
 \[
 \epsilon_j \sim U [-\sigma, \sigma]
 \]

 - We will (mostly) look at $\sigma \to 0$: fundamental uncertainty vanishes, but strategic uncertainty remains

- **Timing assumptions:**

 - Investors place *market orders* to buy debt
 - Country default decision after orders are submitted
Returns for $\tilde{\delta} = 0$ (Rollover risk)

Given proportion x investing in country 1, no default if:

$$x \geq \frac{1 - \theta_1 (\tilde{\delta})}{1 + f} \quad \text{(country 1)}$$

$$1 - x \geq \frac{s (1 - \theta_2 (\tilde{\delta}))}{1 + f} \quad \text{(country 2)}$$
Returns for $\tilde{\delta} = 0$ (Liquidity)

Liquidity/market depth: country 2 price-rises/return-falls faster

Given proportion x investing in country 1, conditional returns are

$$\frac{1}{p_1} = \frac{1}{(1 + f)x} \quad \text{and} \quad \frac{1}{p_2} = \frac{s}{(1 + f)(1 - x)}$$
Strategy space

Threshold Equilibrium:

- Let $\phi(\delta_j)$ be investment in country 1 of agent with signal δ_j
- Consider threshold strategies

 If $\delta_j > \delta^*$ invest in country 1 i.e. $\phi=1$; otherwise country 2 i.e. $\phi=0$

- The equilibrium cutoff δ^* is determined by indifference of marginal investor with signal $\delta_j = \delta^*$
 - Must be indifferent between investing in country 1 versus 2

- We can prove uniqueness of the equilibrium, at least for some part of the parameter space, among monotone functions $\phi(\delta_j)$.
Expected returns

- Marginal investor $\delta_j = \delta^*$ does not know other investors’ signals
 - He asks, suppose fraction $x \in [0, 1]$ of investors have signals $> \delta_j$
 - Marginal agent backs out true $\tilde{\delta}$ for given x as follows
 $$\tilde{\delta} = \delta^* + (2x - 1)\sigma$$
 - Take $\sigma \to 0$ so only strategic uncertainty remains....
 - Global games result: $x \sim U[0, 1]$ from the view of marginal investor, for any prior of $\tilde{\delta}$

- Integrating over possible values of $x \sim U[0, 1]$ gives expected profits
 $$\Pi_1 = \int_{\frac{1}{1+\theta}}^{1} \frac{1}{(1+\theta)e^{-\delta^*}} \frac{1}{(1+f)x} dx = \frac{1}{1+f} \left(\ln \frac{1+f}{1-\theta} + \delta^* \right)$$
 and
 $$\Pi_2 = \int_{0}^{\frac{1+f-s(1-\theta)e^{\delta^*}}{1+f}} \frac{s}{(1+f)(1-x)} dx = \frac{1}{1+f} s \left(-\ln s + \ln \frac{1+f}{1-\theta} - \delta^* \right)$$
Expected returns

For marginal agent, proportion of investors in country 1 is \(x \):

- \(\Pi_1 = \) Integral under green curve
- \(\Pi_2 = \) Integral under red curve
Threshold

- Threshold δ^* is determined by the indifference condition
 \[\Pi_1 (\delta^*) = \Pi_2 (\delta^*) \]

- Solving for δ^* (recall that $s \in (0, 1]$)
 \[\delta^* = -\frac{1-s}{1+s} z + \frac{-s \ln s}{1+s} \]
 where we define “aggregate funding conditions”
 \[z \equiv \ln \frac{1+f}{1-\theta} > 0 \]

- High z means high savings (“savings glut”), good average fundamentals, low average interest rates
 - Low z is opposite
- $\tilde{\delta}^*$: lowest value of $\tilde{\delta}$ so that country 1's bonds are reserve asset
Graphically δ^* as function of country 2 size

Country 1 is reserve asset if fundamental $\tilde{\delta} > \delta^*$
Graphically δ^* as function of country 2 size

Country 1 is reserve asset if fundamental $\tilde{\delta} > \delta^*$
When will world switch?

- In high z world (savings glut)
 - US Treasury size: Debt = $12.7tn, (CB money \approx $4.6tn): maximum liquidity for the world
 - Even if US fiscal position is worse than others (i.e. $\delta^* < 0$)
 - ... Switch not on the horizon

- Unless macro moves to low z world
 - US Treasury size becomes a concern – can the country rollover such a large debt?
 - Investors coordinate on smaller debt country
 - Germany? Debt = $1.5tn
Era of UK consol bond

- UK government debt was reserve asset until sometime after WWI
 - US GDP exceeds UK GDP by 1870
 - In 1890, UK Govt Debt ≈ 3 × US Govt Debt
 - UK Debt/GDP = 0.43, US Debt/GDP = 0.10
Relative fundamentals

- Relative fundamentals/GE in safe assets is central to our model
 - Take model with no coordination, where repayment is equal to surplus (θ) and world interest rate is normalized to one.

\[
p_1 = E[\theta_1], \quad p_2 = E[\theta_2]
\]

- Our model (for $\delta^* = 0$)

\[
\begin{align*}
\theta_1 > \theta_2 & \implies p_1 = 1 + f, \quad p_2 = 0 \\
\theta_1 < \theta_2 & \implies p_2 = 1 + f, \quad p_1 = 0
\end{align*}
\]

- US fiscal position is weaker now than before, but still better than everyone else

- Same for Germany within Eurozone
Negative β

Take an extreme case where country 1 is a.s. reserve asset, $\tilde{\delta} > \delta^*$

- Suppose there is some recovery even in default $L_i = \theta_i$
- Country 1 bond price and return (R)

\[
p_1 = 1 + f - sp_2 \quad \quad \quad R = \frac{1}{1+f-sp_2}
\]

Country 2 bond price $p_2 = \frac{\theta_2}{R}$ (no arbitrage)

- Solving:

\[
p_1 = \frac{1 + f}{1 + s\theta_2} \quad \quad \text{and} \quad \quad p_2 = \frac{1+f}{1+s\theta_2} \theta_2
\]
Negative β

Take an extreme case where country 1 is a.s. reserve asset, $\tilde{\delta} \gg \delta^*$

- Suppose there is some recovery even in default $L_i = \theta_i$
- Country 1 bond price and return (R)

\[
p_1 = 1 + f - sp_2 \\
R = \frac{1}{1+f-sp_2}
\]

Country 2 bond price $p_2 = \frac{\theta_2}{R}$ (no arbitrage)

- Solving:

\[
p_1 = \frac{1 + f}{1 + s\theta_2} \quad \text{and} \quad p_2 = \frac{1+f}{1+s\theta_2} \theta_2
\]

- Small shock to $\theta_1 \downarrow$ has no effect on p_1, but $\theta_2 \downarrow \Rightarrow p_1 \uparrow$
- Reduce world average fundamentals θ_1, θ_2 equally:
 - Reduces p_2, increases p_1
 - Reserve asset has “negative β”
Negative β

Take an extreme case where country 1 is a.s. reserve asset, $\tilde{\delta} >> \delta^*$

- Suppose there is some recovery even in default $L_i = \theta_i$
- Country 1 bond price and return (R)

$$p_1 = 1 + f - sp_2 \quad R = \frac{1}{1 + f - sp_2}$$

Country 2 bond price $p_2 = \frac{\theta_2}{R}$ (no arbitrage)

- Solving:

$$p_1 = \frac{1 + f}{1 + s\theta_2} \quad \text{and} \quad p_2 = \frac{1 + f}{1 + s\theta_2} \theta_2$$

- Small shock to $\theta_1 \downarrow$ has no effect on p_1, but $\theta_2 \downarrow \Rightarrow p_1 \uparrow$
- Reduce world average fundamentals θ_1, θ_2 equally:
 - Reduces p_2, increases p_1
 - Reserve asset has “negative β”
- Lehman shock: Negative shock to US and world fundamentals
 - Treasury yields fall (alternatives rise)
Country 1 $\beta_1 = \frac{\text{Cov}(p_1, \theta_1)}{\text{Var}(\theta_1)}$, as function of relative fundamental δ.

$\theta \sim U[0.1, 0.6], s=0.9, f=0.1, l=0.7$
Switzerland?

- What if there were “full-commitment” reserve assets available to investors?
 - Switzerland: Debt = $127bn, (CB money ≈ $500bn)
 - Denmark: Debt = $155bn
 - US: Debt = $12.7tn, (CB money ≈ $4.6tn)

- Implicit assumption in our analysis is that substantially all of reserve asset demand is satisfied by debt subject to rollover risk
Switzerland?

- What if there were “full-commitment” reserve assets available to investors?
 - Switzerland: Debt = $127bn, (CB money ≈ $500bn)
 - Denmark: Debt = $155bn
- US: Debt = $12.7tn, (CB money ≈ $4.6tn)
- Implicit assumption in our analysis is that substantially all of reserve asset demand is satisfied by debt subject to rollover risk
- Define
 \[\hat{f} = f - p_s s \]
 where \(s \) is quantity of “full-commitment” assets
 - In equilibrium \(p_s \) is set based on expected return from investing in country 1/country 2.
 - Otherwise, model is as analyzed based on total demand of \(\hat{f} \)
Two reserve assets ("joint safety")

- Monotone threshold strategies, only one reserve asset
 - \(\phi(\delta_j) = 1 \) if \(\delta_j > \delta^* \), o.w. 0; where \(\phi \) is investment in country 1
Two reserve assets ("joint safety")

- Monotone threshold strategies, only one reserve asset
 - $\phi(\delta_j) = 1$ if $\delta_j > \delta^*$, o.w. 0; where ϕ is investment in country 1
- If we allow for non-monotone "oscillating" strategies:
 - $\phi(\delta_j)$: 1,0,1,0,1,0... in a non-monotone fashion (not quite "mixing," but similar)
 - Then, for high $z > z_{HL}$, joint safety for values of $\tilde{\delta}$ in GRAY

\begin{align*}
 s &= 0.25 \\
 z_{HL} & \quad \text{gray}
\end{align*}
Sovereign choices

- Debt size (s), fundamentals (θ), are choice variables
 - Externalities in model
 - Role for coordination

- Security design as coordination
Eurobonds and coordination

- Policy proposals to create a Euro-area reserve asset
 - Proceeds to all countries, so all countries get some seignorage
 - Flight to quality is a flight to all, rather than just German Bund

- We study: Countries issue two bonds:
 - A common bond in α share
 - An individual bond in $(1 - \alpha)$ share
 - Common bond is pooled bond (essentially a “bundle”), for which each country is responsible for paying its respective share of the obligation
 - No cross-default provisions (structure is closest to “ESBIES”)

- We set aside moral hazard considerations which are likely first-order
Common bond and individual bonds

- **Two-stage game**
 - **Stage 1:**
 - Countries issue common bonds: α (large) and αs (small)
 - Investors pay $f - \hat{f}$, so common bond price
 \[
p_c = \frac{f - \hat{f}}{\alpha (1 + s)}
 \]
 - Split proceeds $\alpha p_c \frac{s_i}{s_i + s_{-i}}$
 - **Stage 2:**
 - Investor gets signal δ_j
 - Individual country bonds issued at prices p_1 and p_2
 - Investors invest remainder of funds $1 + \hat{f}$ into individual (non-bundled) bonds
If country—i defaults, it does so on both individual and portion of common bond

New no-default condition:

$$
(1 - \alpha)p_1 + \theta_1 + \alpha p_c \geq 1
$$

$$
(1 - \alpha)p_2 + \theta_2 + \alpha p_c \geq 1
$$

Importantly, common bond proceeds are allocated in a state-independent way across the two countries

Contrast this with the “winner takes all” funding provided by the individual bonds; this is a state-dependent allocation
Why might this work?

- In basic model ($\alpha = 0$) no default if,
 \[s_ip_i \geq s_i(1 - \theta_i) \]

- Suppose global funds exceeds funding need:
 \[1 + f \geq (1 - \theta_1) + s_2(1 - \theta_2) \]

 total funds available \hspace{1cm} sum of individual funding needs

- Multiple equilibria....
Why might this work?

- In basic model ($\alpha = 0$) no default if,

$$s_i p_i \geq s_i (1 - \theta_i)$$

- Suppose global funds exceeds funding need:

$$\underbrace{1 + f}_{\text{total funds available}} \geq \underbrace{(1 - \theta_1) + s_2 (1 - \theta_2)}_{\text{sum of individual funding needs}}$$

- Multiple equilibria....

- When $\alpha = 1$, neither country defaults if,

$$\underbrace{1 + f}_{\text{total funds available}} \geq \underbrace{(1 - \theta_1) + s_2 (1 - \theta_2)}_{\text{funding need of common bond}}$$

- Security design coordinates investor actions
 - Flight to the reserve asset generates stable funding for both countries
Common bond equilibrium

- Stage 2 game: investors with \hat{f}
 - Default conditions for each country, and individual bond prices p_i
 - Almost same as previous analyses
- Stage 1 game sets investment in common bond $f - \hat{f}$ based on:

\[
E[R_c] = E[R_{stage2}]
\]
Equilibrium as function of α

$s=0.5 _ z=1.$

- High $\alpha > \alpha^*$ ⇒ joint safety equilibrium always
- Low $\alpha < \alpha_{HL}$ ⇒ single reserve asset, threshold equilibrium
- For $\alpha \in [\alpha_{HL}, \alpha^*]$ both equilibria are possible
Debt size and fundamentals:

- Suppose country i can choose size, S_i
 - Debt float is S_i
 - Surplus is adjusted to $\theta_i S_i$ - i.e. keep tax revenues to debt constant
- Suppose country i can separately choose to increase surplus by δ_i

$$1 - \theta_1 = (1 - \theta) \exp (-\tilde{\delta} - \delta_1)$$
Debt size and fundamentals:

- Suppose country i can choose size, S_i
 - Debt float is S_i
 - Surplus is adjusted to $\theta_i S_i$ - i.e. keep tax revenues to debt constant
- Suppose country i can separately choose to increase surplus by δ_i

$$1 - \theta_1 = (1 - \theta) \exp \left(-\tilde{\delta} - \delta_1 \right)$$

- Easy to solve the model:

$$\delta^* = \frac{S_2 - S_1}{S_1 + S_2} z + \frac{S_1 \ln S_1 - S_2 \ln S_2}{S_1 + S_2} - \delta_1 \frac{S_1}{S_1 + S_2} + \delta_2 \frac{S_2}{S_1 + S_2}.$$

- One obvious effect:
 - Increasing surplus always increases reserve asset status
 - E.g., higher δ_1 reduces δ^* because country 1 become safer
- Less obvious, effect of changing S_i
Crowding out/contagion

▶ Take,
\[\delta^* (S_1, S_2) = \frac{S_2 - S_1}{S_1 + S_2} z + \frac{S_1 \ln S_1 - S_2 \ln S_2}{S_1 + S_2}. \]

▶ Effect of increasing \(S_1 \) on \(\delta^* \):
\[h(S_1, S_2; z) \equiv \frac{\partial \delta^* (S_1, S_2)}{\partial S_1} = \frac{1}{(S_1 + S_2)^2} (S_1 + S_2(\ln S_1 + \ln S_2 + 1 - 2z)). \]

▶ Decreasing in \(z \), negative for large \(z \);
▶ Expanding US debt can increase US reserve asset status
 ▶ Decreases other country's position
Endogenous choices:

- Suppose country 1, 2 have “natural” debt size \((s_1^*, s_2^*)\) and choose size:
 \[
 \max_{S_1} -\delta^* (S_1, S_2) - c(S_1 - s_1^*).
 \]

- Reduce default probability subject to adjustment costs
 \[
 \max_{S_2} +\delta^* (S_1, S_2) - c(S_1 - s_1^*).
 \]

- Equilibrium:
 \[
 h(S_1, S_2; z) = c'(S_1 - s_1^*) \quad \text{and,} \quad h(S_2, S_1; z) = c'(S_2 - s_2^*).
 \]
Equilibrium via a phase diagram

- High z case; $\delta^* = 0$ along diagonal

\[
\frac{\partial \delta^*}{\partial S_2} = h(S_2, S_1) = 0
\]

\[
\frac{\partial \delta^*}{\partial S_1} = h(S_1, S_2) = 0
\]
Equilibrium via a phase diagram

- $\delta^* = 0$ along diagonal

\[h(S_1, S_2) = 0 \]

\[h(S_2, S_1) = 0 \]
Conclusion

- US government debt is reserve asset because:
 - Good relative fundamentals
 - Debt size is large, and world is in high demand for reserve asset (savings glut)
 - Nowhere else to go

- Economics of reserve asset suggest that there can be gains from coordination
 - Eurobonds as coordinated security-design