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Abstract

It is generally believed that the power of unit root tests is determined only by the time span of observations,

not by their sampling frequency. We show that the sampling frequency does matter for financial time series

displaying fat tails and volatility clustering. Our claim builds on recent work on unit root testing based on

non-Gaussian GARCH-based likelihood functions. Such methods yield power gains in the presence of fat

tails and volatility clustering, and the strength of these features increases with the sampling frequency. This

is illustrated using Monte Carlo simulations and an empirical application to real exchange rates.

KEY WORDS: Fat tails; GARCH; Mean reversion; Sampling frequency; Systematic sampling; Purchasing-

power parity.
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1 INTRODUCTION

Testing purchasing-power parity is one of the main applications of unit root and cointegration analysis. Al-

though some researchers have tried to address this problem by checking whether nominal exchange rates

and prices (or price differentials) are cointegrated in a multivariate framework, many others have focussed

on the question whether real exchange rates contain a unit root. The fact that a unit root quite often cannot

be rejected, so that no significant mean reversion in real exchange rates is found, is often not considered to

be decisive evidence against purchasing-power parity. In contrast, the insignificant test result is typically

explained by the notoriously low power of unit root tests, together with the fact that the tendency towards

purchasing-power parity is so weak that it is not detected by conventional unit root tests. To solve this prob-

lem, researchers have tried to increase the power of these tests by obtaining more data; either by considering

a longer time span (of a century or more) of data, or by considering a panel of exchange rates, exploiting

cross-country restrictions, or a combination of these; see Frankel (1986), Frankel and Rose (1996), Lothian

and Taylor (1996), and Taylor (2002).

Another way to obtain larger sample sizes is to consider the same time span, but using data observed at

a higher frequency. However, it is generally believed that this route will not lead to more power, because the

power of unit root tests is mainly affected by time span, and much less by sampling frequency. This result

was first derived by Shiller and Perron (1985), and repeated in the influential review paper by Campbell and

Perron (1991). At an intuitive level, finding significant mean reversion requires a realization of a process

that indeed does pass its mean quite regularly within the sample; increasing the sampling frequency does

not change this in-sample mean-reversion, whereas a longer history of the time series will demonstrate more

instances of passing the mean.

At a more formal level, the theoretical basis for the result of Shiller and Perron (1985) is provided by a

continuous-record asymptotic argument. Suppose that the data may be seen as discrete observations from the

continuous-time Ornstein-Uhlenbeck process (i.e., a continuous-time Gaussian first-order autoregression).

Then the power of a unit root test based on the discrete observations may be approximated by the asymptotic

local power, which is essentially the power of a likelihood ratio test for reducing an Ornstein-Uhlenbeck
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process to a Brownian motion process, and the latter power is solely determined by the time span and the

mean-reversion parameter. Therefore, this approximate local power is the same, whether we consider 10

years of quarterly data or 10 years of daily data, say. Although in practice, the finite-sample power differs

somewhat between these cases, this difference is negligible relative to the power gains that may be obtained

from a longer time span.

The results mentioned so far refer to systematic sampling, where the low-frequency observations are

obtained by skipping intermediate high-frequency observations. This type of sampling is relevant for stock

variables, but also for asset prices, which are typically defined as end-of-day, end-of-week or end-of-month

prices, so that their logarithmic first difference defines the return over the preceding day, week, or month,

respectively. Choi (1992) shows that temporal aggregation of flow variables, where the low-frequency

observations are defined by cumulating the intermediate high-frequency observations, can have an effect on

the power of unit root tests, because of the necessity to account for higher-order dynamics in the aggregated

data. However, this is only a finite-sample effect, which vanishes asymptotically, as can be derived from the

theoretical results of Chambers (2004).

The present paper argues that the effect of systematic sampling on the asymptotic local power of unit

root tests is not negligible when high-frequency innovations are fat-tailed and display volatility clustering,

and these properties are accounted for in the construction of the unit root tests. Our claim is based on

two results. First, recent research by Lucas (1995), Rothenberg and Stock (1997), Seo (1999), Boswijk

(2001), and Li et al. (2002) has demonstrated that when the errors of an autoregressive process display

these typical features of financial data (fat tails and persistent volatility clustering), then (quasi-) likelihood

ratio tests within a model that takes these effects into account can be considerably more powerful than the

conventional least-squares-based Dickey-Fuller tests, which do not explicitly incorporate these properties.

Secondly, these typical features tend to be more pronounced in high-frequency (in particular, daily) data

than in lower-frequency (monthly or quarterly) data. This phenomenon is explained by the analysis of Drost

and Nijman (1993), who show that systematic sampling and temporal aggregation of GARCH (general-

ized autoregressive conditional heteroskedasticity) processes decreases both the kurtosis of the conditional
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distribution and the persistence in the volatility process.

Combining these two results implies that the possibilities of obtaining unit root tests with higher power

increase when one moves from low-frequency to high-frequency observations. In this sense, frequency

does matter. In a different model (allowing for regime-switching in the mean growth rate of a process),

Klaassen (2005) found a similar effect of sampling frequency on the power of a test of the random walk null

hypothesis. For the unit root test, we illustrate the power gain by a small-scale Monte Carlo experiment and

an empirical application to real exchange rates in the post-Bretton Woods era.

The outline of the remainder of this paper is as follows. In Section 2, we review the most important re-

sults about testing for a unit root based on Gaussian and non-Gaussian likelihood functions, and we discuss

the theoretical effect of sampling frequency. Section 3 discusses a stylized Monte Carlo experiment, show-

ing that in a realistic situation, the possible power gains are considerable when moving from the monthly

frequency to daily data. Section 4 discusses the empirical analysis. Here we show that for the real exchange

rate of the German mark versus the British pound, the theoretically expected power gain from using higher

frequency observations leads to a rejection of the unit root hypothesis by a non-Gaussian GARCH-based

likelihood ratio test, whereas the Dickey-Fuller test remains insignificant. For the real US dollar exchange

rates of the German mark and the British pound, on the other hand, none of the tests find evidence in favour

of purchasing-power parity, regardless of the sampling frequency. The final section contains some conclud-

ing remarks.

2 LIKELIHOOD BASED UNIT ROOT TESTS

Consider the first-order autoregressive model for a time series {Xt}t≥1:

Xt = φ0 + φXt−1 + εt, t = 1, 2, . . . (1)

where the starting value X0 is considered fixed, and where {εt}t≥1 is a martingale difference sequence, i.e.,

a disturbance term with mean zero conditional on the past history of Xt. This implies that {εt}t≥1 has mean

zero and displays no autocorrelation. We focus on the first-order autoregression throughout this paper, but
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the results may be generalized to higher-order autoregressions, which are often needed in practice to obtain

uncorrelated disturbances. The main elements of this generalization are discussed in Appendix A.

Defining γ = φ− 1, the model can be rewritten as

∆Xt = φ0 + γXt−1 + εt. (2)

The unit root hypothesis is H0 : γ = 0 (φ = 1), to be tested against the alternative hypothesis H1 : γ < 0

(φ < 1). Under H1 (and provided that φ > −1), the process {Xt}t≥1 is stationary with a constant mean

µ = φ0/(1− φ) = −φ0/γ. The parameter γ represents the strength of the tendency of the process to revert

to this mean. UnderH0, the mean of {Xt}t≥1 is not defined, and instead the process {∆Xt}t≥1 is stationary

with a constant mean φ0, which means that {Xt}t≥1 displays a linear trend if φ0 6= 0. In this paper we focus

on the case where this trend under the null hypothesis is assumed to be zero, which is a realistic assumption

for, e.g., real exchange rates and interest rates. A reparametrization that makes this assumption explicit is

∆Xt = γ(Xt−1 − µ) + εt, (3)

which shows that the constant φ0 = −γµ drops out of the model under the null hypothesis γ = 0. Although

we do not consider this explicitly, the conclusion of this paper continues to hold in generalizations of (1)–(3),

allowing for a linear trend under both the null and the alternative hypothesis.

2.1 Dickey-Fuller Tests

Dickey and Fuller (1979) proposed testingH0 againstH1 by rejecting the null hypothesis for large negative

values of τ̂µ, the t-statistic for γ = 0 based on least-squares estimation of (2). Alternatively, Dickey and

Fuller (1981) proposed to test the same null hypothesis, with the restriction on φ0 implied by (3), by rejecting

for large values of Φ1, the F -statistic for φ0 = γ = 0 in (2). The t-test is equivalent to a signed (one-tailed)

likelihood ratio test for γ = 0 against γ < 0 in (2), under the assumption that {εt}t≥1 is an independent

and identically distributed (i.i.d.) N(0, σ2ε) sequence. Under the same conditions, the F -test is equivalent

to the likelihood ratio test for H0 against H1 in (3). However, the asymptotic properties of τ̂µ and Φ1 will

continue to hold under much wider conditions, as considered below.
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An essential ingredient in deriving the asymptotic properties is the functional central limit theorem,

which states that if limn→∞ n
−1∑n

t=1 var(εt) = σ2ε < ∞, and under otherwise fairly mild conditions

(allowing for excess kurtosis and some forms of volatility clustering in {εt}t≥1),

1

σε
√
n

bsnc∑
t=1

εt
L−→W (s), s ∈ [0, 1],

where bxc denotes the integer part of x, where L−→ denotes convergence in distribution as n → ∞, and

where W (s) is a standard Brownian motion process on [0, 1]. This result, together with the continuous

mapping theorem, implies that, underH0 and as the sample size n tends to infinity,

τ̂µ
L−→

[∫ 1

0
W̃ (s)2ds

]−1/2 ∫ 1

0
W̃ (s)dW (s), (4)

2Φ1
L−→

∫ 1

0
dW (s)G(s)′

[∫ 1

0
G(s)G(s)′ds

]−1 ∫ 1

0
G(s)dW (s), (5)

with W̃ (s) = W (s) −
∫ 1
0 W (u)du and G(s)′ = [W (s), 1]. The factor 2 on the left-hand side of (5) is

included only to facilitate comparison with the limiting expression for the non-Gaussian-based likelihood

ratio test considered below; the statistic 2Φ1 is in fact the Wald test statistic for φ0 = γ = 0 in (2), and

the distribution of the right-hand side expression of (5) is also the limiting null distribution of the likelihood

ratio statistic (based on an i.i.d. Gaussian likelihood). The limiting distributions are tabulated by Dickey and

Fuller (1979, 1981), based on simulation of a discretization of the relevant integrals.

Under a sequence of local alternatives Hn : γ = c/n, where c < 0 is a non-centrality parameter, the

results of Chan and Wei (1987) imply that as n→∞,

τ̂µ
L−→

[∫ 1

0
Ũ(s)2ds

]−1/2 ∫ 1

0
Ũ(s)[dW (s) + cU(s)ds], (6)

2Φ1
L−→

∫ 1

0
[dW (s) + cU(s)ds]H(s)′

×
[∫ 1

0
H(s)H(s)′ds

]−1 ∫ 1

0
H(s)[dW (s) + cU(s)ds], (7)

where Ũ(s) = U(s) −
∫ 1
0 U(u)du, H(s) = [U(s), 1]′, and where U(s) =

∫ s
0 e

c(s−u)dW (u), an Ornstein-

Uhlenbeck process, which is the solution to the stochastic differential equation dU(s) = cU(s)ds+dW (s).

7



The probability that the right-hand side expression in (6) is less than the 100α% quantile of the null distri-

bution in (4), or that the right-hand side of (7) exceeds the 100(1− α)% quantile of the null distribution in

(5), defines the asymptotic local power functions of the two tests. These provide an approximation to the

actual power of τ̂µ and Φ1 for finite samples. As the non-centrality parameter c becomes larger in absolute

value (i.e., more negative), the center of the distributions of τ̂µ and Φ1 will shift (to the left and to the right,

respectively), leading to higher power.

These results have direct implications for the effect of sampling frequency on the power of the tests. For

example, suppose that the model (1) applies to a sample consisting of 25 years of quarterly observations

(hence n = 100), with φ = 0.95 and hence mean reversion parameter γ = −0.05. Then the asymptotic

local power of the Dickey-Fuller τ̂µ test is the rejection probability of (6) for c = nγ = −5. This may

be directly compared to the situation where we consider, for the same period of 25 years, the annual (end-

of-year) observations {X∗j = X4j}n
∗
j=1, with n∗ = n/4 = 25. Writing (1) with φ0 = −γµ as Xt − µ =

φ(Xt−1 − µ) + εt, the implied model for the annual observations is

X∗j − µ = φ4(X∗j−1 − µ) + ε∗j ,

where ε∗j =
∑3

i=0 φ
iε4j−i, so that {ε∗j}j≥1 is a serially uncorrelated process. Therefore, the annual mean-

reversion parameter is γ∗ = φ4 − 1 = −0.185, so that the non-centrality parameter becomes c∗ = n∗γ∗ =

−4.637, which corresponds to an asymptotic local power that is only marginally smaller than the local

power relevant for the quarterly observations (see also Stock (1994), p. 2776). In other words, moving from

25 annual observations to 100 quarterly observations will increase the sample size by a factor 4, but will

only marginally increase the local power: in this example, the power of the τ̂µ test at the 5% significance

level would increase from 10.9% to 11.8%. By comparison, moving from 25 annual observations to 100

annual observations leads to an increase of the non-centrality parameter by a factor 4, which corresponds to

an increase in local power from 10.9% to 79%.

As indicated above, these asymptotic results also apply when {εt}t≥1 is a stationary GARCH process,

or when the distribution of {εt}t≥1 has a larger kurtosis than the Gaussian distribution. However, when

the actual data-generating process displays such deviations from the i.i.d. Gaussian assumption, then the
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Dickey-Fuller test is not a likelihood ratio test, and hence it is no longer optimal. In that case, tests based

on a likelihood function that captures this volatility clustering and distributional shape will have a larger

asymptotic local power. This is considered next.

2.2 Likelihood Ratio Tests Based on a Non-Gaussian GARCH Likelihood

Unit root testing based on a non-Gaussian but i.i.d. likelihood is considered by Cox and Llatas (1991), Lucas

(1995), and Rothenberg and Stock (1997). Tests based on a Gaussian GARCH likelihood are analyzed by

Ling and Li (1998, 2003), Seo (1999), Boswijk (2001), and Li et al. (2002), inter alia. A combination of

both approaches, i.e., unit root inference based on a non-Gaussian GARCH likelihood, can be found in Ling

and McAleer (2003). We refer to these papers and the references therein for a full derivation of these results,

and only mention the most important aspects here. Moreover, some technical results that are used here are

derived in Appendix B.

Consider the model

∆Xt = φ0 + γXt−1 + εt, (8a)

σ2t = ω + αε2t−1 + βσ2t−1, (8b)

ηt =
εt
σt
∼ i.i.d. f(ηt), (8c)

where f(ηt) is a (possibly non-Gaussian) density with zero mean and unit variance, so that σ2t is the con-

ditional variance of εt. We assume that α + β < 1, so that {εt} has a finite unconditional variance

σ2ε = ω/(1 − α − β). Let δ = (γ, φ0)
′ and Zt = (Xt−1, 1)′, and let θ denote the full parameter vec-

tor, containing δ, the GARCH parameters (ω, α, β), and possible additional parameters characterizing the

distributional shape of ηt. Since the conditional density of ∆Xt given the past is σ−1t f((∆Xt − δ′Zt)/σt),

the log-likelihood function has the following form:

`(θ) =
n∑
t=1

`t(θ) =
n∑
t=1

{
−1

2
log σ2t + log f

(
∆Xt − δ′Zt

σt

)}
.

This leads to the likelihood ratio (LR) statistic, defined as usual:

LR = −2
[
`(θ̂0)− `(θ̂)

]
, (9)
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where θ̂ is the unrestricted maximum likelihood (ML) estimator, and θ̂0 is the ML estimator under the

restriction δ = 0. Furthermore, a quasi-maximum likelihood (QML) based t-statistic for γ = 0 is given by

tQML =
γ̂√

v̂arQML(γ̂)
, (10)

where γ̂ is the first component of θ̂, and v̂arQML(γ̂) is the first diagonal element of

v̂arQML(θ̂) =

(
∂2`(θ̂)

∂θ∂θ′

)−1 n∑
t=1

∂`t(θ̂)

∂θ

∂`t(θ̂)

∂θ′

(
∂2`(θ̂)

∂θ∂θ′

)−1
. (11)

As usual, the statisticLR is only a likelihood ratio statistic under correct specification of the model (8a)–(8c),

and its asymptotic properties, sketched below, are obtained under that condition. In contrast, the t-statistic

(10)–(11) is constructed to be robust against possible misspecification of f , and as such may be used as a

quasi-likelihood-based statistic. The LR statistic (9) with f the standard Gaussian density was analyzed by

Boswijk (2001); a version of the t-statistic derived from the same Gaussian likelihood can be found in Seo

(1999), Ling and Li (2003), and Li et al. (2002), and a t-statistic for the non-Gaussian GARCH model (with

f known or estimated non-parametrically) is given by Ling and McAleer (2003).

The asymptotic properties of the LR and t-statistic are derived most easily via a second-order Tay-

lor series expansion of `(θ), which leads us to express LR, up to an asymptotically negligible term, as a

quadratic form in the score vector. Defining the function ψ(η) = −d log f(η)/dη, the partial derivative of

the log-likelihood with respect to δ is given by

∂`(θ)

∂δ
=

n∑
t=1

{
1

σt
Ztψ

(
∆Xt − δ′Zt

σt

)
+

1

2σ2t

[
ψ

(
∆Xt − δ′Zt

σt

)
∆Xt − δ′Zt

σt
− 1

]
∂σ2t
∂δ

}
, (12)

where the GARCH model implies that

∂σ2t
∂δ

= −2α

t−1∑
i=1

βi−1Zt−i(∆Xt−i − δ′Zt−i).

Under the null hypothesis, the score vector (12) (divided by n) is asymptotically equivalent to

1

n

n∑
t=1

Zt

(
ψ(ηt)

σt
− α

σ2t
[ψ (ηt) ηt − 1]

t−1∑
i=1

βi−1εt−i

)
=

1

n

n∑
t=1

Ztυt, (13)
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where υt is implicitly defined. It is shown in Appendix B that {υt}t≥1 is a martingale difference sequence

with finite variance σ2υ, and that cov(εt, υt) = 1. This leads to the following bivariate functional central

limit theorem: as n→∞,

1√
n

bsnc∑
t=1

 εt

υt

 L−→

 σεW (s)

συB(s)

 , s ∈ [0, 1], (14)

where B(s) is a standard Brownian motion, such that cov (σεW (s), συB(s)) = cov(εt, υt) = 1. Hence

the correlation between W (s) and B(s) is given by ρ = 1/(σεσυ). The sample moment (13) converges in

distribution, as n → ∞, to the stochastic integral σεσυ
∫ 1
0 G(s)dB(s), and this in turn implies, under H0

and as n→∞,

tQML
L−→

[∫ 1

0
W̃ (s)2ds

]−1 ∫ 1

0
W̃ (s)dB(s), (15)

LR
L−→

∫ 1

0
dB(s)G(s)′

[∫ 1

0
G(s)G(s)′ds

]−1 ∫ 1

0
G(s)dB(s), (16)

where W̃ (s) and G(s) are the same as in (4)–(5).

For an i.i.d. Gaussian (quasi-) likelihood, it can be derived that υt = εt/σ
2, so that ρ = 1. In general

however, 0 < ρ ≤ 1, where smaller values of ρ are associated with a larger degree of variation in the

volatility, and with fatter tails in the density f(η). (The limit ρ → 0 corresponds to the distribution of

{εt}t≥1 approaching an infinite-variance distribution; however, in that case (14) no longer applies and a

different limit theory is needed.) This implies that the limiting null distributions of tQML and LR depend

on the nuisance parameter ρ = corr(W (1), B(1)). This parameter ρ may be estimated consistently by the

sample correlation of ε̂t and υ̂t, and approximate quantiles of the asymptotic null distributions for a given

value of ρ may be obtained from the normal approximation of Abadir and Lucas (2000) (for the tQML

statistic) and the Gamma approximation of Boswijk and Doornik (2005) (for the LR statistic).
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Under local alternatives, we have as n→∞,

tQML
L−→

[∫ 1

0
Ũ(s)2ds

]−1 ∫ 1

0
Ũ(s)

[
dB(s) +

c

ρ
U(s)ds

]
, (17)

LR
L−→

∫ 1

0

[
dB(s) +

c

ρ
U(s)ds

]
H(s)′

[∫ 1

0
H(s)H(s)′ds

]−1
×
∫ 1

0
H(s)

[
dB(s) +

c

ρ
U(s)ds

]
, (18)

where U(s), Ũ(s) and H(s) are the same as before. Comparing (17)–(18) with (6)–(7), we observe two

differences. First, the term dW (s) has been replaced by dB(s) in the stochastic integrals, and secondly, the

non-centrality parameter c has been replaced by c/ρ. The former has a relatively minor effect on the local

power of the test, but the effective non-centrality parameter c/ρ implies that large power gains of tQML and

LR over τ̂µ and Φ1, respectively, are obtained for cases where ρ is relatively small. As discussed above,

this occurs when the volatility displays much variation (large values of the GARCH parameters α and β),

and when the distribution of ηt has heavy tails.

These results again have implications for the effect of sampling frequency on power. As we move

from low-frequency data to high-frequency data, maintaining the same time span, the parameter c hardly

changes, for the same reasons as indicated in the previous sub-section. However, the results of Drost and

Nijman (1993) imply that for the high-frequency data, the sum of the GARCH parameters α + β will be

closer to 1 than for low-frequency observations, implying more persistent variation in the volatility, and that

the kurtosis of {εt}t≥1 will be higher. Both effects will cause ρ to be smaller for high-frequency data, so

that the power of the test increases with sampling frequency. In the next section, we study how large this

power increase is in a small Monte Carlo experiment.
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3 A MONTE CARLO EXPERIMENT

As the data-generating process (DGP), we consider the AR(1)-GARCH(1,1)-t(ν) model

∆Xt = γ(Xt−1 − µ) + εt, (19a)

σ2t = ω + αε2t−1 + βσ2t−1, (19b)

ηt =
εt
σt
∼ i.i.d. t(ν), t = 1, . . . , n. (19c)

Here t(ν) denotes the standardized t(ν) distribution, such that E(η2t ) = 1 and hence σ2t is indeed the

conditional variance of εt given the past. The initial values for the process are chosen as σ20 = σ2ε =

ω/(1− α− β), and X0 = µ+ σ0η0, where η0 ∼ t(ν), independent of {ηt}t≥1.

For each replication, we first generate a high-frequency sample {Xt}nt=0, using parameter values that

mimic properties of daily financial data, i.e.,

α = 0.07, β = 0.9, ν = 5.

These parameter values are such that the volatility is persistent (α+β = 0.97), and both the conditional and

the unconditional distribution have a high (but finite) kurtosis of

κη = 3
ν − 2

ν − 4
= 9 and κε = κη

1− (α+ β)2

1− (α+ β)2 − (κη − 1)α2
= 26.7,

respectively; see He and Teräsvirta (1999) for moments of GARCH processes. For the mean-reversion

parameter we choose γ = c/n, where c ∈ {0,−5,−10,−15,−20,−25,−30}; thus we study both the size

and the (size-corrected) power of various tests. Note that the analysis is invariant to µ and ω, which only

determine the location and scale of Xt but not its dynamic properties or distributional shape.

To study the effect of systematic sampling, we then construct a low-frequency sample {X∗j }n
∗
j=0 by a

skip-sample version of Xt, i.e.,

X∗j = Xmj , j = 0, . . . , n∗ =
n

m
,

where we take m = 20. These may be thought of as the end-of-month versions of Xt, assuming 20 trading

days in a month. We choose n = 2000 and hence n∗ = 100; thus we mimic a sample of about 8 years of
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daily data {Xt}nt=0, and the corresponding 8 years of monthly data {X∗j }n
∗
j=0. We do not attempt to provide

full characterization of the implied data-generating process for {X∗j }n
∗
j=0. The main result for our purpose,

which follows from the analysis of Drost and Nijman (1993), is that under the null hypothesis γ = 0, ∆X∗j

is a weak GARCH(1,1) process with α∗ + β∗ = (α + β)m = 0.54 (so that the volatility displays less

persistence), and that the kurtosis of the standardized errors is lower for low-frequency data. (Drost and

Nijman (1993) define a process {εt} to be weak GARCH if the linear projection of ε2t on a constant and the

past history of εt and ε2t satisfies a GARCH specification.) Under the alternative γ < 0, the implied process

is weak ARMA-GARCH of a higher order; however, because we consider very local alternatives, we suspect

that an AR(1)-GARCH(1,1) model will also be adequate for the low-frequency data in these cases.

For both the low- and the high-frequency data we apply four unit root tests, each at the 5% nominal size:

• DF, the Dickey-Fuller τ̂µ test for γ = 0 in the least-squares regression (2);

• QML-GARCH, the tQML test for γ = 0 based on a Gaussian GARCH(1,1) likelihood (ignoring the

conditional t(ν)-distribution of the DGP);

• QML-t(ν), the tQML test for γ = 0 based on an i.i.d. t(ν) likelihood (ignoring the GARCH(1,1)

aspect of the DGP);

• ML, the tQML test for γ = 0 based on a GARCH(1,1)-t(ν) model.

The motivation for studying QML-GARCH and QML-t(ν) is to investigate how much power may be gained

by taking into account only volatility clustering or fat-tailedness. These tests are based on a misspecified

likelihood function, which is corrected in the construction of the standard error from (11). The test based on

the GARCH-t likelihood is actually only a true maximum-likelihood based test for the high-frequency data;

for the monthly observations, the actual DGP will not exactly be an AR(1)-GARCH(1,1)-t(ν) process, so

that the test in this case is also a QML-based test. We only report results for the one-sided t-tests; further

simulations reveal that the two-sided Φ1 and LR tests generally have lower power than their one-sided

counterparts, but otherwise display the same relative power behaviour.

14



We obtain p-values for each of the statistics using the normal approximation of Abadir and Lucas (2000),

extended to allow for an intercept in the autoregression. The correlation parameter ρ is estimated simply as

the sample correlation of the the residuals ε̂t and the “scores” υ̂t, both evaluated at the unrestricted estimates.

All results below are based on 10, 000 replications, and have been obtained using Ox 6, see Doornik (2009).

– Insert Table 1 here –

Table 1 displays the actual size of the four tests, both for low-frequency and for high-frequency obser-

vations. Also indicated are the average (over 10, 000 replications) estimates of the correlation parameter

ρ. We observe that the (Q)ML tests display some over-rejection when based on 100 monthly observations.

These distortions clearly decrease as we move to 2000 daily observations. The values of ρ indicate that both

the largest power gains and the largest effect of sampling frequency on power may be expected from the ML

test.

– Insert Figure 1 here –

The size-corrected power curves for the four tests are plotted against −c in Figure 1. Recall that the

mean-reversion parameter γ is given by c/n, so the range of c corresponds to γ ∈ {0,−0.0025, . . . ,

−0.015}. In each of the four panels, the vertical distance between the solid and the dashed curves indi-

cates the gains from using high-frequency observations. To evaluate the power gain from using the (Q)ML

tests applied to low-frequency observations, the low-frequency power of the Dickey-Fuller test is indicated

by a dotted curve in the graphs for QML-GARCH, QML-t(ν), and ML.

As predicted from the values of ρ in Table 1, the largest power gains from high-frequency observations

are obtained by the ML test, followed by the QML-t(ν) test. The QML-GARCH test, based on a Gaussian

GARCH quasi-likelihood function, is the least able to exploit this power potential. This confirms earlier

results, see Boswijk (2001), that for the type of GARCH parameter values typically encountered in practice,

taking account of fat-tailedness has a bigger contribution to the power gain than taking account of volatility

clustering. In the low-frequency case, the power of the (Q)ML tests is only slightly higher than the DF test
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for low values of c; for larger deviations from the null hypothesis, the DF has higher power. This indicates

that in smaller samples of monthly observations, the gain from modelling the fat tails and volatility clustering

is limited, and for larger values of c this gain is in fact more than off-set by the degrees-of-freedom loss from

estimating more parameters. Finally, we see that as expected, the power of the Dickey-Fuller test is hardly

affected by the sampling frequency.

The power curves also allow us to compare the effects of sampling frequency and time span on the power

of the tests. Concentrating on the ML test, we see that for the daily frequency, a non-centrality parameter of

c = −10 is sufficient to obtain a power of about 60%. When using monthly data, a non-centrality of about

c = −16 is needed to obtain the same power. Suppose that c = −10 corresponds to 8 years of daily data

(n = 2000), with daily mean-reversion parameter γ = c/n = −0.005. The corresponding monthly mean-

reversion parameter is γ∗ = (1 − 0.005)20 − 1 = −0.095, so that about 14 years of monthly observations

(ñ = 168) are needed to obtain the desired non-centrality parameter c = −16. In other words, in this

specific case 14 years of monthly data contain about the same information on the mean-reversion of the

process as 8 years of daily data.

In summary, this Monte Carlo experiment confirms the theoretical predictions: sampling at a higher

frequency increases the degree of fat-tailedness and volatility clustering in the data, and hence the possibility

of obtaining more power from tests that take these properties into account. In the next section we explore

whether this also has consequences for the empirical analysis of real exchange rates.

4 EMPIRICAL APPLICATION

In this section we apply the unit root tests studied in this paper to real exchange rate data in the post-Bretton

Woods era (using data from April 1978 through October 2009). We focus on the three real exchange rates

between the US, Germany and the UK (for the euro period, we use the fixed e/DM exchange rate to convert

euro rates to D-mark rates). Daily nominal exchange rates have been converted to real exchange rates using

daily producer price indices, constructed by log-linear interpolation from the monthly price indices taken

from IMF’s International Financial Statistics. From these daily real exchange rates, we define the end-of-
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week, end-of-month and end-of-quarter series by systematic sampling. The question of interest is whether

purchasing-power parity holds in the long run, i.e., whether a unit root in real exchange rates can be rejected.

– Insert Figure 2 here –

The daily log real exchange rates are depicted in Figure 2. In all three series we observe very slow (if

any) mean-reversion: real exchange rates may persistently deviate from their mean for a large number of

years. The graphs illustrate the common finding that it is hard to find evidence in favour of purchasing-power

parity within the kind of time span considered here.

The first row of Figure 3 displays the daily exchange rate returns. The period from October 1990 to

September 1992, when the British pound was pegged to the German mark within the European Monetary

System, shows up as a period of low volatility in the mark-pound exchange rate returns. Because this is a

relatively short period, we choose not to model this period separately from the rest of the sample.

– Insert Figure 3 here –

To investigate whether there is any scope for power improvement due to fat-tailedness and volatility

clustering, Figure 3 also depicts some stylized properties of the daily returns, in particular their correlogram,

the correlogram of squared returns, and the estimated density. We observe the typical characteristics of

financial returns: very little serial correlation in the returns, positive and persistent correlation in the squared

returns, and a relatively peaked and fat-tailed density of the returns, with a kurtosis given by 7.11, 5.89 and

6.76, respectively. Clearly, this characterizes only the unconditional distributions of the returns; whether the

conditional distributions also display excess kurtosis will become evident from the estimated GARCH-t(ν)

models for the returns.

– Insert Table 2 here –

Table 2 displays the p-values of the Dickey-Fuller τ̂µ and Φ1 tests, and the tQML and LR tests based on

(8) with ηt ∼ i.i.d. t(ν), for the three different real exchange rates and four different frequencies. For ease

of comparison, we only consider first-order autoregressive models. For the daily data, this sometimes leads
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to some residual autocorrelation, but accounting for this by including lagged differences hardly affects the

results in Table 2. The GARCH-t(ν) model has only been estimated when this model provides a significant

improvement over the Gaussian i.i.d. model for the disturbances, which is the case for all series at the

weekly and daily frequencies, and for two series at the monthly frequency. For the quarterly series, and the

monthly series of the dollar-mark rate, the volatility clustering and leptokurtosis are not strong enough to

cause significant deviations from the Gaussian i.i.d. model. All results in this section have been obtained

using the Garch module within PcGive 13, see Doornik and Hendry (2009).

Consider first the p-values of the Dickey-Fuller tests. We observe that for all three series, these p-

values display little variation over the different frequencies. None of these tests lead us to conclude that

there is significant mean-reversion in the real exchange rates at the 5% significance level, for any sampling

frequency. This may be seen as an illustration of Shiller and Perron (1985)’s conclusion that sampling

frequency matters very little for the power of the Dickey-Fuller test.

For the two real exchange rates vis-à-vis the US dollar, we find that using the tQML and LR tests does

not lead to a different outcome: regardless of the sampling frequency, the unit root in these series cannot be

rejected. In fact, the p-values of these tests are often higher than the Dickey-Fuller p-values, and generally

do not decrease with the sampling frequency. This result holds despite the fact that the conditions for

more powerful tests at higher frequencies are satisfied: as the sampling frequency increases, the estimated

volatility persistence α̂+ β̂ increases, and the estimated degrees of freedom ν̂ decreases (as predicted by the

analysis of Drost and Nijman (1993)), which together leads to a decrease in the estimated correlation ρ̂.

For the real exchange rate of the German mark vis-à-vis the British pound, on the other hand, we do

observe outcomes in line with the theoretical predictions. At the monthly frequency, the tQML and LR tests

have p-values that are already closer to 5% than the Dickey-Fuller tests, and as we move to weekly or daily

observations, these p-values drop to 1% or even lower, indicating strong evidence against the unit root in

this series. Note that for this series, the estimated mean-reversion parameter closely follows the theoretical

predictions: for example, the daily mean-reversion parameter of −0.0013 would imply a weekly mean-

reversion parameter of −0.0065, quite close to the estimated −0.0069, and the same applies to the monthly
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and quarterly mean-reversion parameters implied by the weekly and monthly estimates, respectively. This

highlights that the stronger evidence in favour of mean-reversion is not a consequence of a larger estimated

effect, but of a more efficient estimate.

In summary, we conclude that in one out of three real exchange rates, the use of high-frequency data

in combination with a GARCH-t(ν) based LR test changes the evidence against the unit root hypothesis

from insignificant to significant, as predicted by the theoretical results and Monte Carlo evidence in the

previous sections. An obvious explanation of the difference between the mark-pound rate and the other

two rates is that the close geographical proximity of the UK and Germany, and their joint membership of

the European Union, leads to more effective goods-market arbitrage between these two currencies. Another,

more technical explanation is that the dollar exchange rates display more prominent swings in the first decade

than the intra-European exchange rate. This might indicate that the possible mean-reverting behavior of the

dollar-mark and dollar-pound real exchange rates over this period is not adequately described by a linear

AR process, but requires, e.g., threshold effects or switching regimes. As the models considered here do not

allow for such non-linear effects, this leads to an estimate of γ that is biased towards zero. Increasing the

data frequency does not solve this problem, so that it is difficult to find significant evidence of purchasing-

power parity in these cases. The results for the mark-pound real exchange rate, however, demonstrate that

for series where the linear AR specification seems more appropriate, the power gains from increasing the

frequency are empirically relevant.

5 CONCLUDING REMARKS

The main conclusion of this paper is that the common belief, that only time span matters for the power of

unit root tests, is incorrect for financial data, where high-frequency observations display properties that may

be exploited for obtaining tests with higher power. Clearly, the alternative approaches to obtaining more

power, such as longer time series, panel data restrictions, or alternative treatments of the constant and trend

are useful as well, and could be combined with the approach presented here. Similar power gains from non-

Gaussian likelihood analysis may be obtained in a multivariate cointegration context, see Boswijk and Lucas
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(2002). Although one can also apply GARCH likelihoods in a cointegration context (see Li et al. (2001) and

Seo (2007)), the main problem here is to find a parsimoniously parametrized multivariate GARCH model

that is reasonably well specified.
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APPENDIX A: HIGHER-ORDER AUTOREGRESSIONS

This appendix discusses how the theory in Section 2 may be extended to higher-order (but finite) autogres-

sive models. Consider the AR(p) model with mean µ:

Xt = µ+

p∑
j=1

φj(Xt−j − µ) + εt.

The null and alternative hypotheses can be formulated in terms of the roots of the characteristic polynomial

φ(z) = 1 −
∑p

j=1 φjz
j . Under the null hypothesis H0 : φ(1) = 0, the characteristic equation has a unit

root and the process is integrated of order 1 (provided all other roots are outside the unit circle). Under the

alternative H1 : φ(1) > 0, and if all roots are outside the unit circle, the process is stationary. Defining

γ = −φ(1) and γj = −
∑p

i=j+1 φi, the model can be rewritten as

∆Xt = γ(Xt−1 − µ) +

p−1∑
j=1

γj∆Xt−j + εt, (A.1)

which shows that γ may be interpreted as mean-reversion parameter, similar to the AR(1) case.

To define a sequence of local alternatives Hn, we assume that one of the inverted roots of φ(z) is a

real-valued sequence φ = 1 + c/n, and all other roots are fixed, and outside the unit circle. This allows us

to decompose φ(z) as

φ(z) = (1− φz)ψ(z),

where the roots of ψ(z) = 1−
∑p−1

j=1 ψjz
j are outside the unit circle. Note that this implies γ = −φ(1) =
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ψ(1)c/n. This leads to the representation

Xt − µ = φ(Xt−1 − µ) + ut, (A.2)

with ut = ψ(L)−1εt, a stationary linear process with long-run variance σ2u = σ2ε/ψ(1)2. The process

{ut}t≥1 satisfies the conditions of a functional central limit theorem, so that (σ2un)−1/2
∑bsnc

t=1 ut
L−→

W (s), with W (s) a standard Brownian motion. From this we find, under local alternatives Hn, that

n−1/2Xbsnc
L−→ σuU(s), with U(s) an Ornstein-Uhlenbeck process, and that in turn can be used to show

that the τ̂µ and Φ1 statistics defined from least-squares estimation of (A.1) have the same limiting dis-

tributions under the null and local alternatives as given in (4)–(7). Similarly, the non-Gaussian GARCH

likelihood-based statistics tQML and LR will have the same limiting distributions as given in (15)–(18).

If (A.2) applies to the high-frequency data {Xt}t≥1, then we find, for the low-frequency (skip-sampled)

observations {X∗j = Xmj}j≥1:

X∗j − µ = φ∗(Xj−1 − µ) + u∗j ,

where {u∗j}j≥1 is now a stationary and invertible ARMA process, and φ∗ = φm. Therefore, φ = 1 + c/n

implies that

φ∗ − 1 =
(

1 +
c

n

)m
− 1 =

mc

n
+ o(n−1) =

c

n∗
+ o(n−1),

where n∗ = n/m. Therefore, the same non-centrality parameter c applies to the high- and low-frequency

observations.

APPENDIX B: NON-GAUSSIAN AND GARCH LIKELIHOOD ANALYSIS

In this appendix we provide some details about non-Gaussian GARCH-based likelihood analysis that are

referred to in Section 2.2. We start from the score process {υt}t≥1, defined implicitly in (13) as

υt =
ψ(ηt)

σt
− α

σ2t
[ψ(ηt)ηt − 1]

t−1∑
i=1

βi−1εt−i,

with ψ(η) = −d log f(η)/dη. Let Ft be the σ-field generated by {εt−i, ηt−i}i≥0, so that σt is Ft−1-

measurable. We will show that E [υt|Ft−1] = 0, so that {υt}t≥1 is a martingale difference sequence with
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respect to the filtration {Ft}t≥1; and that cov(εt, υt) = 1, which implies that σ2υ = var(υt) ≥ 1/σ2ε ,

because ρ2 = corr(εt, υt)
2 = 1/(σ2εσ

2
υ) ≤ 1.

We start with

E [υt|Ft−1] = E

[
ψ(ηt)

σt
− α

σ2t
[ψ(ηt)ηt − 1]

t−1∑
i=1

βi−1εt−i

∣∣∣∣∣Ft−1
]

=
1

σt
E [ψ(ηt)|Ft−1]−

α

σ2t

t−1∑
i=1

βi−1εt−iE [ψ(ηt)ηt − 1|Ft−1]

=
1

σt
E [ψ(ηt)]−

α

σ2t

t−1∑
i=1

βi−1εt−iE [ψ(ηt)ηt − 1] ,

where we have used the “taking out what is known” rule for conditional expectations, and the fact that

{ηt}t≥1 is i.i.d., so that ηt is independent of Ft−1.

For sufficiently regular densities, we have E [ψ(ηt)] = 0 and E [ψ(ηt)ηt] = 0. To see this, it will be

useful to express ψ(η) as the score of a location model x = µ + η, with density g(x, µ) = f(x − µ),

evaluated at µ = 0:

ψ(η) =
∂ log g(x, µ)

∂µ

∣∣∣∣
µ=0

=
1

f(x)

∂g(x, µ)

∂µ

∣∣∣∣
µ=0

= − 1

f(η)

df(η)

dη
.

This implies, assuming that the order of differentiation and integration may be changed:

E [ψ(η)] =

∫
R

1

f(x)

∂g(x, µ)

∂µ

∣∣∣∣
µ=0

f(x)dx =
d

dµ

∫
R
g(x, µ)dx

∣∣∣∣
µ=0

= 0,

because
∫
R g(x, µ)dx = 1 for all µ. Furthermore,

E [ψ(η)η] =

∫
R

1

f(x)

∂g(x, µ)

∂µ

∣∣∣∣
µ=0

xf(x)dx =
d

dµ

∫
R
g(x, µ)xdx

∣∣∣∣
µ=0

= 1,

because
∫
R g(x, µ)xdx = µ. Combining these results leads to E [υt|Ft−1] = 0. Note that {υt}t≥1 (as well

as {εt}t≥1) is a serially dependent sequence, but this dependence does not arise in their first conditional

moment.

Next, the martingale difference property for {υt}t≥1 and {εt}t≥1 implies E[εt] = E[υt] = 0, so that

cov(εt, υt) = E[εtυt] = E [E (εtυt|Ft−1)] ,
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using the law of iterated expectations. Next,

E[εtυt|Ft−1] = E

[
σtηt

(
ψ(ηt)

σt
− α

σ2t
[ψ(ηt)ηt − 1]

t−1∑
i=1

βi−1εt−i

)∣∣∣∣∣Ft−1
]

= E[ηtψ(ηt)]−
α

σt

t−1∑
i=1

βi−1εt−iE
[
ψ(ηt)η

2
t − ηt

]
= 1,

because E[ηtψ(ηt)] = 1, E[ηt] = 0, and

E
[
ψ(η)η2

]
=

∫
R

1

f(x)

∂g(x, µ)

∂µ

∣∣∣∣
µ=0

x2f(x)dx =
d

dµ

∫
R
g(x, µ)x2dx

∣∣∣∣
µ=0

= 0,

since
∫
R g(x, µ)x2dx = 1 + µ2 (the second uncentered moment of x = µ + η), which has derivative 0 at

µ = 0.
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Table 1: Actual size (5% nominal level) and average correlation ρ of the four unit root tests.

size ρ

low freq. high freq. low freq. high freq.

DF 0.058 0.056 1.000 1.000

QML-GARCH 0.071 0.046 0.966 0.851

QML-t(ν) 0.076 0.049 0.926 0.842

ML 0.093 0.052 0.907 0.798

Note: Results based on 10,000 replications. The tests DF, QML-GARCH, QML-t(ν) and ML are defined

in the text. “Size” refers to rejecton frequency at the 5% nominal significance level. ρ denotes the average

sample correlation between between residuals ε̂t and scores υ̂t, where the latter are defined in (13).
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Table 2: Unit root test p-values and estimated parameters for the real exchange rate returns.

sampling Dickey-Fuller GARCH-t(ν) AR(1) and GARCH-t(ν) parameter estimates

frequency p(τ̂µ) p(Φ1) p(tQML) p(LR) γ̂ × 102 α̂ α̂+ β̂ ν̂ ρ̂

US dollar versus German mark

quarterly 0.296 0.433 − − −6.327 − − − −

monthly 0.336 0.488 − − −1.944 − − − −

weekly 0.350 0.506 0.806 0.931 −0.189 0.096 0.925 11.17 0.920

daily 0.350 0.512 0.861 0.704 −0.016 0.055 0.990 5.640 0.841

US dollar versus British pound

quarterly 0.155 0.225 − − −7.740 − − − −

monthly 0.146 0.211 0.809 0.862 −1.395 0.037 0.987 7.716 0.926

weekly 0.167 0.242 0.853 0.865 −0.124 0.089 0.952 8.725 0.862

daily 0.187 0.271 0.860 0.359 −0.014 0.050 0.994 5.909 0.807

German mark versus British pound

quarterly 0.082 0.121 − − −9.240 − − − −

monthly 0.076 0.111 0.061 0.054 −2.854 0.193 0.906 5.599 0.780

weekly 0.092 0.133 0.020 0.005 −0.687 0.111 0.972 5.747 0.796

daily 0.103 0.146 0.012 0.000 −0.127 0.075 0.997 5.277 0.752

Note: Results based on the estimation period April 1978 through October 2009. p(·) denotes the p-value of

the argument. The test statistics τ̂µ, Φ1, tQML and LR are defined in Section 2. γ̂, α̂, β̂ and ν̂ are maximum

likelihood estimators in the model (19a)-(19c), in cases where this model is estimated; in the other cases, γ̂

is the least-squares estimate. ρ̂ is the sample correlation between residuals ε̂t and scores υ̂t, where the latter

are defined in (13).
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Figure 1: Power (as function of −c; 5% nominal level) of four unit root tests.
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Figure 2: Daily log real exchange rates.
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Figure 3: Graphs, correlograms and densities of daily (squared) real exchange rate returns.
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