Paying Positive to Go Negative:
Advertisers’ Competition and Media Reports*

Andrea Blasco†, Paolo Pin‡, Francesco Sobbrio§

February 9, 2012

Abstract

This paper analyzes a two-sided market for news where advertisers may pay a media outlet to conceal negative information about the quality of their own product (paying positive to avoid negative) and/or to disclose negative information about the quality of their competitors’ products (paying positive to go negative). We show that whether or not advertisers have negative consequences on the accuracy of news reports ultimately depends on the extent of correlation among advertisers’ products. Specifically, the lower is the correlation among the qualities of the advertisers’ products, the (weakly) higher is the accuracy of the media outlet’s reports. Moreover, when advertisers’ products are correlated, a higher degree of competition in the market of the advertisers’ products may decrease the accuracy of the media outlet’s reports.

JEL Classification: L82, D82

Keywords: Advertising, Commercial Media Bias, Competition, Media accuracy, Two-sided market

*We are very grateful to seminar audiences at the Université catholique de Louvain, University of Essex, Copenhagen Business School, CERGE-EI, University of Bologna, IMT Lucca, the 10th journées Louis-André Gérard-Varet, Max Weber Programme Lustrum Conference, the 2nd Ravello Workshop, Bomopa Economics Meetings 2011, the EUI-FSR Workshop “Economics of Communication and Media Markets”, and at the 2010 Workshop in Media Economics and Public Policy. All remaining errors are ours.

†London Business School, United Kingdom. ablasco@london.edu.
‡Dipartimento di Economia Politica e Statistica, University of Siena, Italy. paolo.pin@unisi.it.
§IMT Lucca, Italy. f.sobbrio@imtlucca.it
“The one area in which the case for a [Federal Trade Commission] agency is stronger than previously suggested is where no seller has an incentive to furnish correct information [...] An example is cigarettes [...] Apart from sellers of other tobacco products, for whom a campaign of disparaging cigarettes would involve a palpable risk of being hoist with their own petard, no seller or group of sellers could anticipate a marked rise in sales as a result of a reduction in smoking. There is therefore no competitor with an incentive to supply information on the relationship between smoking and health that cigarette companies naturally try to withhold”.

1 Introduction

Advertisers and the media live in a symbiotic relationship. Advertisers need the media to reach their consumers; meanwhile the media needs advertisers to finance their activities and to make profits. This is true for almost any media platform and this relationship becomes even more stringent for those whose revenues depend exclusively on advertising (commercial TV, radio, online newspapers, blogs, free-press, etc.).

The traditional economic literature on advertising (see Bagwell, 2007) has typically focused on the economic rationale behind advertising (e.g., persuasive or informative advertising) while disregarding the role of media in the analysis. More recently, the literature on two-sided markets has found in the media one of its archetypal platforms, i.e., a platform connecting advertisers and consumers (Anderson and Gabszewicz, 2006; Armstrong, 2006). This literature has analyzed the interactions between media and advertisers in a two-sided market where the media sell their editorial content to viewers and, at the same time, the media sell the access to such viewers to the advertisers.1

Less attention has been devoted to the understanding of the advertising value of the media editorial content (i.e., the non-advertising content). Advertisers may want to influence the editorial content of a media outlet for two main reasons. First, advertisers may want a media outlet to choose specific types of editorial content to attract (i.e., target) specific socio-demographic segments of viewers/consumers.2 On the other hand, advertisers may want to specifically direct the editorial content of a media outlet to influence the consumption decision of every viewer. Indeed, as already noted by Downs (1957), consumption is one of the reasons why people demand information from news media (along with entertainment, voting and production). Hence, viewers value the media editorial contents (also) because they may provide valuable information on consumer products. A recent survey of 27,000 individuals in 55 countries pointed out that, prior

1Hamilton (2004) refers to selling the access to viewers as selling “eyeballs”.
2See Gabszewicz et al. (2001), (2002); George and Waldfogel (2003); Hamilton (2004); Strömberg (2004); Wilbur (2008); Bergemann and Bonatti (2011); Gal-Or et al. (2011).
to choosing an electronic product, 57% of consumers read products’ reviews. Similarly, 45% and 37% of individuals consult reviews before choosing a car and a software package, respectively.\(^3\) Hence, the advertisers’ profits in the products market ultimately depend on how (and how many) consumers are influenced by the media editorial contents, which in turn may affect the advertisers’ willingness/ability to pay the media. Consequently, the relationship between advertisers and media outlets may go well beyond the simple sales of advertising space and the traditional rationales for advertising.

In this paper, we abstract from standard rationales for advertising (i.e., persuasive or informative advertising) in order to explicitly focus on an environment where media offer their editorial content to their viewers and, at the same time, they sell a bundle to advertisers constituted by such viewers and the editorial content. Therefore, how much a producer is willing to spend in advertising depends on how many consumers it may reach through a media outlet and on what kind of information is being released by the media outlet. Moreover, unlike targeted advertising, in the model advertisers want to influence the editorial content of a media outlet not to attract specific types of viewers/consumers but to influence viewers/consumers’ beliefs regarding the products’ qualities. Specifically, a media outlet observes information about the quality of the advertisers’ products and it may use such information when bargaining over advertising fees.

The following example illustrates the basic intuition of the model. Suppose that the media outlet is a magazine specialized in computer products and there are two firms competing in the market for products (e.g., Acer and Toshiba). The magazine gathers information on whether each firm has a bad quality product (e.g., a defect) or not, i.e., it gets a signal on each firm’s product. Each firm would never want the media outlet to publish negative information (if any) on its own product. On the other hand, it may benefit from the media outlet publishing negative information (if any) on its rival’s product. Hence, if the magazine found negative evidence on either or on both firms, it may use such information to charge a higher advertising fee to either firm. The advertisement expenditures may, then, end up representing a hidden payment aimed either at concealing negative information about the advertiser’s own product (\textit{paying positive to avoid negative}) or at revealing negative information about the competitor’s product (\textit{paying positive to go negative}).\(^4\) Hence, even though in the model consumers watch only “positive” advertisements that do not provide any information \textit{per se}, such advertisements may represent an implicit payment to obtain a “negative advertisement” in the editorial content of the media outlet (i.e., the disclosure of negative information about a competitor’s product by the media outlet).\(^5\) Therefore, while the advertising

\(^3\)Source: Nielsen “Global Trends” June 2010.
\(^4\)For the interested reader, the online appendix provides few examples consistent with the rationale of “\textit{paying positive to go negative}”.
\(^5\)Friebel and Heinz (2011) provide robust evidence pointing out the significative negative effects of negative coverage by media on the market shares of the affected firms.
content has no direct informative value for media viewers, it may indirectly influence the informativeness (i.e., accuracy) of the non-advertising content by affecting the media outlet’s incentives to disclose its available information to its viewers.

We generalize the above reasoning to provide an economic rationale for the observed differences in the accuracy of media reports. The media frequently report negative news on consumers products. Recent examples include Toyota with its malfunctioning car accelerators, the IPhone 4 with its signal reception issues, and Toshiba with its overheating laptop series. Indeed, the core business of many consumer magazines and websites (e.g., PC Magazine, PC World, Consumer Reports, Consumer Digest, Runner’s World, Wine Spectator, Zagat) is exactly based on providing reviews of consumers’ products and to identify the presence of issues in these products. At the same time, there is robust anecdotal evidence on significant under-reporting in the news media coverage of specific products/issues due to the advertisers’ pressure to censor unfavorable contents.\(^6\) In the US, for many years, tobacco advertisers had successfully pressured the media to not disclose any information about the health-related risks of smoking (Baker, 1994; Bagdikian, 2004; Chaloupka and Warner, 2000). Pharmaceutical companies have likewise exerted significant pressure on the editorial decisions of medical journals (Fletcher, 2003; Fugh-Berman et al., 2006).\(^7\) In a notorious case, the executive editor of Transplantation and Dialysis rejected a guest editorial that questioned the efficacy of epoetin in the end-stage renal disease, despite favorable peer review, because, as he wrote to the author, “it went beyond what our marketing department was willing to accommodate” (Dyer, 2004, page 328).\(^8\) The conspicuous advertisements of car manufacturers also seem to represent one of the key factors leading media to present evidence on the sources of global warming which appear to be largely unbalanced with respect to the consensus within the scientific community (Oreskes, 2004; Boykoff and Boykoff, 2004; Ellman and Germano, 2009). This type of advertisers-induced distortion in the accuracy of news reports is referred to as “commercial media bias” or “self-censorship” (Ellman and Germano, 2009; Germano and Meier, 2010).

Nevertheless, editorial contents disclosing products’ defects or negative side effects such as the dangerous effects of smoking, the ineffectiveness of a drug product or the effects of car pollution on global warming, are all likely to negatively affect the revenues of the advertiser whose product is the subject of such news. Hence, it is somewhat puzzling to

\(^6\)See Blasco and Sobbrio (2011) for a detailed review of the anecdotal and empirical evidence on the “commercial media bias”.

\(^7\)In 2010, Pharmaceutical Companies spent 326$ millions on advertising in medical journals in the US (IMS Health 2010). Pharmaceutical companies may also finance medical journals through “sponsored subscriptions” (Fugh-Berman et al., 2006).

\(^8\)The article also suggested that the Medicare spending on this treatment was unjustified given the limited benefits for patients. Medicare spent over $7.6 billions on epoetin between 1991 and 2002 (Dyer 2004). Two different drug companies produce two products (i.e., Procrit and Epogen) both using epoetin as their main component (source: medicinenet.com/epoetin_alfa).
observe that this “commercial media bias” has arisen only in some of these cases. The present paper provides a simple rationale that explains these differences. We show that whether or not advertisers’ pressure on media has negative consequences on the accuracy of media editorial contents ultimately depends on the extent of correlation among the advertisers’ products. Hence, the occurrence of “commercial media bias” depends on whether the competition in the products’ market also translates into competition over the media editorial content. When the correlation in the products’ qualities is high, all the firms share the same preferences over the media editorial content (i.e., every firm would want the media to refrain from disclosing any negative information about any product since such news would hurt the sales of its own product). Hence, in this case, advertisers compete in the market for products but they do not compete over the media editorial content. When instead this correlation is low, firms have conflicting preferences over the media editorial content (i.e., “bad” firms want to pay positive to avoid negative and “good” firms want to pay positive to go negative). Hence, advertisers compete both in the products market and over the media editorial content.

Therefore, when advertisers’ products are weakly correlated, “commercial media bias” is endogenously swept away by the advertisers’ competition over news contents. Instead, in the presence of a high degree of correlation among advertisers’ products, “commercial media bias” represents a serious concern. The tobacco industry provides a straightforward example of products whose “qualities” (i.e., health risks) are almost perfectly correlated. Instead, the electronics industry provides an example of products whose qualities are weakly correlated. Consistent with anecdotal evidence, the model predicts that in the first case media are likely to hide any negative information observed, while in the second one media are likely to disclose it.

Since consumers have rational expectations, the endogenous level of media outlet’s viewership is decreasing in the degree of correlation as well, i.e., fewer consumers would find it worthwhile to watch the media outlet’s reports. In turn, this implies that the media outlet’s expected profits will also be lower. In other words, the higher the advertisers’ pressure on the media outlet to hide negative information, the less “credible” (i.e., accurate) its news reports will be and thus the lower the profits that it ends up earning.

Finally, we also analyze the role played by competition in the market for products on the accuracy of media reports. We show that, while in the case of uncorrelated products a higher degree of competition always leads to a higher accuracy of news reports, this is not always the case when products qualities are correlated. In other words, an increase in competition in the market for products may be associated with lower news accuracy (i.e., more “commercial media bias”). Thus, while a high degree of competition among firms with conflicting preferences over news reports is beneficial for consumers, this may not be the case when firms share similar preferences over news contents.
The model provides testable empirical implications that could help better guide the empirical literature examining the link between advertising and news contents. Empirical studies aiming at testing the influence of advertisers of media contents should take into account that media are more likely to accurately report news on issues where competing producers have conflicting preferences. Hence, the empirical identification strategy should control for differences across industries in the degree of correlation in products’ qualities and in the extent of competition among producers.

Overall, the analysis suggests that media regulators should target their monitoring efforts towards news contents/issues upon which advertisers are likely to share similar preferences.

2 Related Literature

Our paper is closely related to the literature that analyzes how the accuracy of news reports may directly affect the purchasing decision of consumers and thus advertisers’ profits (Ellman and Germano, 2009; Germano and Meier, 2010). Ellman and Germano (2009) show that, if an advertiser could commit to withdraw its ads as a reaction to unfavorable news coverage, it may induce the media outlet to not publish such information. Germano and Meier (2010) focus on a similar issue by looking at n media outlets located on a network within the Chen and Riordan’s (2007) spokes model. The authors show that if the number of media outlets is too small (or if there are very few owners), self-censorship by media outlets would arise endogenously. The present paper contributes to the existing literature along two main dimensions.

First, both Ellman and Germano (2009) and Germano and Meier (2010) focus on the case where the net effect of increasing accuracy on a media outlet’s advertising revenues is negative, for a given level of circulation. Instead, we do not make any prior assumption on this effect. While any advertiser would want a media outlet to always conceal any negative information regarding its own product, such advertiser may have different preferences regarding the disclosure of negative information about the competitor’s products depending on the correlation structure. We show that when allowing advertisers to compete over news contents, the media incentives to produce truthful reports are not necessarily misaligned with the advertisers’ ones. Specifically, whether advertisers have a negative influence on the accuracy of media reports or not, would be endogenously determined by the structure of the correlation in the products’ industry.

9See also Germano (2009) for an analysis of the “uncovered” case of the spokes model.
10See also Petrova (2011b) for a model on media bias analyzing the interaction between advertising revenues and special interests groups’ subsidies.
11Ellman and Germano (2009) present an informal discussion, consistent with our results, of the case where advertisers have conflicting preferences over the accuracy of media reports. Germano and Meier (2010) consider in an extension a similar case, however they still assume that the overall (mean) effect
Second, while the above papers look at how competition in the media industry may increase the accuracy of media reports, while keeping constant the preferences of advertisers for low accuracy, we focus on the complementary research question. That is, we show how and when advertisers’ competition in the products market may increase the accuracy of media reports even in the presence of a monopolistic media outlet.

In recent years, there has been a growing empirical literature looking at advertising expenditure and media coverage (Reuter and Zitzewitz, 2006; Rinallo and Basuroy, 2009; Reuters, 2009; Gambaro and Puglisi, 2010; Di Tella and Franceschelli, 2011). This literature usually finds a positive correlation between advertising expenditure and favorable media coverage. However, it also shows that this link weakens or disappears in contexts where there is higher advertisers competition over media contents, or where advertisers’ products are more differentiated. Reuter and Zitzewitz (2006) find a positive relation between mutual fund recommendation and advertising expenditures for personal finance media while no correlation for national newspapers. Rinallo and Basuroy (2009) find that preferential coverage of the advertisers’ products is weaker when the media outlet’s advertising revenues are more diversified. Reuter (2009) finds weak evidence of a correlation between wine ratings and advertising in Wine Spectator. Thus, consistent with the predictions of our model, this recent empirical evidence seems to suggest that the stronger the competition among advertisers with conflicting preferences (e.g., more advertisers competing over media contents or lower correlation among advertisers’ products), the higher the probability that a media outlet would report accurate information.12

Formally, our paper is related to the model of Besley and Prat (2006) on media capture by incumbent politicians. Specifically, the signal structure of the model builds upon the one specified in their paper. We model the effects of conflicting preferences over news contents as a principal-multiple agents game with multilateral externalities (see Segal, 1999). Indeed, the media outlet acts as a principal making simultaneous bilateral offers to multiple agents (i.e., the potential advertisers) and the information on products’ qualities disclosed by the media outlet to its viewers depend on the set of accepted offers. Moreover, this information creates externalities since it affects the agents’ payoffs. In such of increasing accuracy on a media outlet’s advertising revenues is negative. In line with the rationale behind our result, Petrova (2011b) shows that media bias is lower when special interest groups have misaligned preferences.

12Historical evidence also seems to suggest that the overall impact of advertising on the accuracy of media reports is not necessarily negative. Gentzkow et al. (2006) focus on the US newspaper industry between the end of the 19th century and the beginning of the 20th century. They show that technological changes (i.e., decreasing production costs) induced significative economies of scale and an increase in competitiveness of the newspaper industry. In turn, these changes increased advertising revenues which contributed to create an independent press. Petrova (2011a) focuses on the US press in the 1880s and shows that a higher profitability of advertising in local markets leads to the presence of more independent newspapers. Poitras and Sutter (2009) look at the decline in muckraking by US magazines at the beginning of the 20th century. They find no evidence in support of the hypothesis that such decline was the results of advertisers’ boycott as a reaction to adverse news coverage. See Blasco and Sobbrio (2011) for a survey of the empirical and theoretical literature on “commercial media bias”.

6
a setting, as shown by Segal (1999), when the set of feasible contracts is unrestricted, the principal is able to maximize its rents by offering a contract involving the harshest possible punishment to the agents rejecting its offer. Similarly, in our framework, the media outlet has full bargaining power with respect to bad quality producers. Therefore, it is always able to extract all the profits they obtain in the market of informed consumers. In turn, this leads to the presence of a clear link between the externality created by the media outlet’s news reports and the degree of correlation in the distribution of agents’ types. Finally, we also show that the maximization of the media outlet’s profits is not necessarily associated with accurate news reports. That is, the model provides insights on how the rent extraction process pursued by the media outlet may positively or negatively affect informed consumers.

Finally, our results on the beneficial effects of competition among agents with conflicting preferences on the availability of accurate information, is similar to the spirit of Dewatripont and Tirole (1999). However, their setting and their focus are rather different from ours. In their model, competition between agents with conflicting preferences is beneficial because it alleviates the moral hazard problem of agents directly involved in information acquisition. Instead, in our framework, information acquisition is not subject to moral hazard. Moreover, when agents have conflicting preferences over the disclosure of information by a third party (i.e., the media outlet), competition is beneficial because the willingness to pay of the agent in favor of information disclosure (i.e., the “good” quality firms) is always at least as high as that of the opposite party (i.e., the “bad” quality firms).

The paper is structured as follows. Section 3 describes the general model. Section 4 characterizes the media outlet’s equilibrium news reports as a function of the number of firms competing in the market for products and of the correlation among products qualities. Section 5 analyzes how the accuracy of the media outlet’s reports influences the equilibrium fraction of informed consumers. Section 6 discusses how the degree of competition in the market for products affects the accuracy of news reports. Section 7 provides some robustness checks results of the benchmark model. Section 8 concludes. A formal definition of the equilibrium of the game is given in Appendix A, while all the proofs are provided in Appendix B.

3 The Model

There is a single media outlet and a set \(\mathcal{L} \) of firms, with \(L = |\mathcal{L}| \). Each firm is producing a good for a unit mass of potential consumers. \textit{Ex ante} all products are identical. However, each firm may experience a negative shock in the quality of its product when the product is already in the marketplace (e.g., a defect). The quality of firm \(l \)’s product, \(q_l \), may turn
out to be either good (i.e., $q_l = g$) or bad (i.e., $q_l = b$). In other words, Nature selects a set \mathcal{B} of firms with a bad quality product, i.e., $q_l = b$, $\forall l \in \mathcal{B}$.

Consumers. Consumers are risk neutral and demand (at most) one product. Each consumer derives a positive utility u_g from consuming a good quality product and (zero) utility u_b from consuming a bad quality one. Consumers also have the option to decide to do not consume any of the products offered by the L firms if they are not satisfied with the expected quality of any of them. We assume that a consumer prefers to stick with her “status quo” utility u_0 rather than consuming a bad quality (i.e., defected) product. In other words, consumers are happy to consume a good quality product but they prefer to use their outside consumption option (e.g., keep using an old product) rather than end up using a bad quality or defective product, i.e., $u_g > u_0 > u_b = 0$.

Information structure. \mathcal{B} is private information of Nature; however, the distribution of the number of bad quality products, i.e., $\tilde{\mathcal{B}} = |\mathcal{B}|$, is common knowledge for all agents (i.e., firms, consumers and the media outlet). Specifically, $\tilde{\mathcal{B}}$ is distributed according to a discrete probability distribution \mathcal{P}. In order to encompass a wide range of industry structures (i.e., possible correlation structures among negative shocks in products’ qualities), we do not impose any prior restriction over \mathcal{P}. \mathcal{P} is characterized only by two elements: i) the corresponding p.m.f. and c.d.f. $p(n)$, i.e. the probability of having n bad products; ii) the average fraction of good quality products, i.e., $\nu = 1 - \sum_{i=0}^{L} i \cdot p(i)$, where $\nu \in (0, 1)$.13

The media outlet, along with all producers, observes a signal $z_l \in \{\emptyset; b\}$ for each product l. If product l is a good quality one (i.e., $l \notin \mathcal{B}$) then $\Pr(z_l = \emptyset|q_l = g) = 1$ (i.e., there will never be any evidence on the presence of a defect in the product). Instead, if product l is of bad quality (i.e., $l \in \mathcal{B}$) than signal b is realized with probability $\theta \in (0, 1]$, i.e., $\Pr(z_l = b|q_l = b) = \theta$. Hence, θ represents the probability of detecting a bad quality product.14

Finally, $B \leq \tilde{\mathcal{B}}$ denotes the number of bad signals contained in the vector of signals $z = \{z_1; \ldots; z_L\}$ observed by producers and the media outlet (i.e., B denotes the number of bad quality products discovered by the media outlet and firms).

13Notice that i) is sufficient to characterize \mathcal{P} because firms are *ex ante* homogeneous. For instance, if products’ qualities are uncorrelated, then it is simply the case that $\nu = \Pr(q_l = g)$ and $(1 - \nu) = \Pr(q_l = b)$. That is, in this case ν would simply represent the prior probability of any product being a good quality one. Instead, in the opposite case of perfect correlation, $\nu = p(L)$ and $(1 - \nu) = p(0)$. That is, in this case ν would be the prior probability of all firms having a good quality product. In Section 4.2 we present as an example a family of distributions embedding these two polar cases.

14Notice that, like Besley and Prat (2006), we assume that signals can only be bad. However, as in their model, the framework could be extended to incorporate good signals, as long as the probability of receiving a good signal is lower than the probability of a bad one. That is, from the media outlet’s perspective, not observing any signal would increase the probability of the product being of good quality.
Media outlet’s reports. Once the media outlet has received the vector of signals z, it has to produce a news report regarding the L products. Such a news report by the media outlet consists of a vector of messages $m = (m_1; ...; m_L)$. Signals are hard information, i.e., the media outlet may conceal but not forge information. Hence, the vector of messages m must be consistent with the set of signals observed, i.e., $m \in M$ where $M = \{ (m_1, ..., m_L) : m_l \in \{ \emptyset \cup z_l \} \forall l \in L \}$ represents the message space of the media outlet contingent on z.

Informed consumers. Since the media outlet’s report may be informative for the consumption decision of any given individual, a consumer may decide to become informed before choosing a product. In order to access the media outlet’s report m, consumer i has to incur in an opportunity cost $c_i \sim U[0, c]$ (i.e., pay c_i to observe m), where c is the upper-bound on such opportunity cost. Then, if a consumer decides to watch the media outlet’s report, she updates her beliefs accordingly and she decides which product to consume, if any.

The expected utility of a consumer (net of the opportunity cost of acquiring information) when watching the media outlet’s report is:

$$U^I(m) = \max \left\{ \arg \max_i E_P[u(q_l)|m]; \ u_0 \right\}$$

where E_P represents the expectation operator given P. That is, since $u_b = 0$, then $E_P[u(q_l)|m] = \Pr(q_l = g|m) \cdot u_g$. Instead, the expected utility of remaining uninformed is simply:

$$U^U = \max \{ \nu \cdot u_g; \ u_0 \}$$

In the rest of the analysis we focus, without loss of generality, on the most general case where $u_0 \leq \nu \cdot u_g$. This is the case wherein, a consumer finds it optimal to (randomly) choose one of the products offered by the L firms when not watching the media outlet’s report. Hence, consumer i will be willing to watch the media outlet’s report if and only if:

$$c_i \leq E_P[U^I(m)] - U^U \quad (1)$$

Therefore, the expected fraction of informed consumers will be:

$$\alpha = \frac{E_P[U^I(m)] - \nu \cdot u_g}{c} \quad (2)$$

Consumers have rational expectations regarding the media outlet’s reporting strategy. For instance, if the media outlet were to always conceal any negative information about

15 That is, the editorial content of the media outlet is identified by its news report on products’ qualities.

16 Without loss of generality, we consider $c \geq \nu \cdot u_g$. That is, there are some consumers who never find optimal to become informed.
all products, its report would be uninformative. Consumer would anticipate this, thus, α would be equal to 0.\(^{17}\)

Advertising fees and Media outlet’s profits. Before deciding what information to report to viewers, the media outlet may bargain with producers over the advertising fees by using the information that it obtained on the quality of their products (i.e., z). This bargaining process takes place in two stages. In the first stage, the media outlet makes an offer to each firm $l \in L$. The media outlet asks an advertising fee t_l to each firm contingent on a media outlet’s news report m and on the expected fraction of informed consumers α. Then, firms observe all the offers of the media outlet and they simultaneously decide whether or not to accept their own offer.\(^ {18}\) Hence, firm l’s action is simply $a_l \in A = \{A, R\}$ where A stands for “Accept” and R stands for “Reject”. Then, the media outlet’s offer to firm l is $\tau_l(m, a_l) \in C(M, A, \mathbb{R}_+)$ where C is the set of all functions $\tau : M \times A \rightarrow \mathbb{R}_+$. Specifically, $\tau_l(m, a_l)$ involves an advertising fee $t_l > 0$ to be paid by firm l to the media outlet contingent on firm l accepting this offer and the media outlet reporting m.\(^ {19}\)

The media outlet’s profits are given by the sum of the advertising fees t_l collected from producers, given its news report:

$$\Gamma(m, \tau, a) = \sum_{l \in L} \tau_l(m, a_l) \quad (3)$$

Notice that, since the aim of our study is to analyze the advertisers’ influence on the accuracy of news reports, the media outlet’s profits correspond to the profits from advertising.\(^ {20}\) That is, we focus on the incentives to produce truthful reports coming from the advertisers’ side, while abstracting from the ones coming from the consumers’ side per se (i.e., profits from viewership independent from advertising).\(^ {21}\) At the same time, we assume that when indifferent between two news reports yielding the same profits, the

\(^{17}\)Notice that if, for example, the media outlet also had an entertainment value for its viewers, some consumers would be willing to watch the media outlet even in presence of uninformative reports. That is, there would exist a lower bound α^{\min} in the fraction of “informed” consumers.

\(^{18}\)Notice that analogous to the setting of Besley and Prat (2006), since agents are risk neutral nothing would change if the media outlet were to make its offers before observing the vector of signals (i.e., the media outlet would ask to each firm for a fee equal to the expected value of all possible message-contingent fees).

\(^{19}\)The media outlet is allowed to make conflicting offers at the bargaining stage. For example, the media outlet may ask firm 1 to pay $t_1 > 0$ to hide $z_1 = b$ and, at the same time, ask firm 2 to pay $t_2 > 0$ to reveal $z_1 = b$. However, even if both firms accept these offers, the media outlet cannot be paid by both, since, clearly, the payments are contingent on the media outlet’s message. That is, in the above example, the media outlet may either hide $z_1 = b$ and then be paid t_1 by firm 1 or, in alternative, it may reveal $z_1 = b$ and then be paid t_2 by firm 2.

\(^{20}\)Indeed, this is the case for many types of media such as commercial TV, online newspapers, radio, free-press, etc.

\(^{21}\)The model naturally extends to a framework where the media outlet charges a fixed monetary price to its viewers.
media outlet will always choose the most informative one.\footnote{That is, the following tie-breaking rule applies: let D and D' be the number of bad quality signals disclosed by the media outlet given messages m and m'. Then, if $\Gamma(m) = \Gamma(m')$ and $D > D'$, then $m \succ m'$.} This tie-breaking rule simply implies that, all other things equal, the profits of the media outlet are increasing in the informativeness of its messages (e.g., reputation concerns).

Producers. Producers aim at maximizing their total sales in the market for products, i.e., maximizing their market share (as in Ellman and Germano 2009 and Germano and Meier 2010). Clearly, firm l’s final sales are given by the share of consumers who end up choosing its product. Hence, the profits of firm l, given the media outlet’s report m, are:

$$\Pi_l(m, a_l, \alpha) = S_l(m, \alpha) - \tau_l(m, a_l),$$

where $S_l(m, \alpha)$ denotes the total market share of firm l as a function of the media outlet’s report m.\footnote{There are two implicit assumptions in this setting (without loss of generality). First, the total value of the market is normalized to one. Second, whenever indifferent, any producer would accept the media outlet’s offer.}

Timing of the game. The timing of the above described game is as follows:

1. Nature determines which products experience a negative shock (i.e., *ex-post* quality $q_l, \forall l$).
2. The media outlet and the firms observe z.
3. The media outlet asks an advertising fee τ_l to each firm contingent on the news report $m \in \mathcal{M}$.
4. All firms simultaneously and independently decide whether to accept the media outlet’s offer or not.
5. Given the set of accepted offers, the media outlet selects m (consistent with z) to maximize its profits.
6. Every consumer i decides whether to incur the opportunity cost c_i to watch the media outlet’s report and if so she updates her beliefs on products’ qualities.
7. Consumers choose the product(s) with the highest expected quality.

The next section provides a discussion on the structure of the theoretical model and on the intuition and robustness of the main assumptions.
3.1 Discussion: Structure and assumptions of the theoretical framework

Endogenous fraction of informed consumers. The equilibrium of the game has two components. The first is the Nash equilibrium of the bargaining game between firms and the media outlet (for any given level of \(\alpha \)). The second is the rational expectation equilibrium represented by the equilibrium fraction of informed consumers, i.e., \(\alpha \). Since consumers expectations must be correct \textit{ex-post}, the fraction of informed consumers \(\alpha \) is completely endogenous in our model since it depends on the consumers’ rational expectations over the equilibrium strategies of the media outlet and of the advertisers. At the same time, at the bargaining stage between the media outlet and producers, \(\alpha \) will be considered as given, since expectations are formed before observing the outcome of this bargaining game. It is actually the case that point 6 in the above described timing structure is independent from the previous five points, as the consumers (clearly) decide whether to watch the media outlet before knowing its content. Indeed, consumers play their action (i.e., to watch or to do not watch the media outlet’s reports) as in a simultaneous game against the outcome of the bargaining game. Moreover, it turns out that while the optimal \(\alpha \) clearly depends on the equilibrium of the bargaining game, the equilibrium of the bargaining game is independent on the actual size of \(\alpha \). This is why, while \(\alpha \) is endogenous, we will first solve the bargaining game considering \(\alpha \) as a fixed best response (Section 4). Then, we will find the optimal endogenous \(\alpha \) as the actual best response to the equilibrium of the bargaining game (Section 5).

Two sided market for news. The model embeds the typical structure of a two-sided market. The price (i.e., ads fee) that agents on one side of the market (i.e., advertisers) are willing to pay to the platform (i.e., the media outlet) depends on how many agents on the other side of the market are willing to access the platform (i.e., fraction of informed consumers \(\alpha \)). Indeed, at the bargaining stage, for any \(\alpha > 0 \), the media outlet may have an incentive to conceal negative information about firm \(l \) (if any) in exchange of a transfer \(t_l > 0 \) from each producer whose profits would be negatively affected by publishing such information. At the same time, depending on the structure of the correlation among products’ qualities, a firm may also be willing to pay a positive transfer to the media outlet in order to publish negative information about its competitor. Hence, as it is shown in the equilibrium analysis below, the advertising fees that the media outlet can obtain from producers are an increasing function of \(\alpha \). Thus, although the media outlet does not obtain direct revenues from its viewers, its profits indirectly depend on the equilibrium fraction of informed consumers \(\alpha \).

\(^{24}\)See the Definition A in Appendix A for a formal characterization of the equilibrium of the game.
Exogenous variations in α. The above described framework implies that α is completely determined by the parameters and the equilibrium strategies. Clearly, in the real world, many sources of randomness could create fluctuations in the realized value of α, e.g., a consumer may find out the true quality of a product independently from watching the media outlet’s report. Nevertheless, our analysis is without loss of generality in this respect. Indeed, since all the payoffs are linear in α and all players are risk neutral, adding any source of noise with zero mean to equation (2) would not modify any of our results.

Role of advertising. Differently from the literature on informative advertising (e.g., Nelson, 1974; Butters, 1977; Grossman and Shapiro, 1984; Milgrom and Roberts, 1986; Dukes, 2004), advertising in our model does not convey or signal any information to viewers per se. Indeed, advertising does not have any signaling value since viewers do not observe the advertising fees paid by firms.25 In our framework, advertising indirectly influences viewers’ information by shaping the media outlet’s incentives to disclose its information. Indeed, a higher level of advertising may be associated with a higher or lower level of information of consumers on the firms’ products depending on whether ads are paid to reveal or to hide information. The advertisers’ willingness to pay depends both on how many consumers they may reach through the media outlet and on what kind of information the media outlet is reporting. As a consequence, the ads fee that advertisers are willing to pay upon not obtaining a favorable news report by the media outlet is normalized to zero. This normalization is without loss of generality since the bargaining process between advertisers and the media outlet does not involve the level of ads but only the price of ads. For the same reason, introducing in the model a nuisance parameter γ to capture the consumers’ disutility from ads would not affect the results. Indeed, a higher ads fee paid by the advertisers does not correspond to a higher level of ads and, thus, it does not affect negatively the media outlet’s readership.

Since the focus of our analysis is on the relationship between advertising expenditures and non-advertising contents, the rationale of the model also differs from the one of comparative advertising (e.g., Anderson and Renault, 2009; Barigozzi et al., 2009). More generally, while a firm may use comparative advertising to “go negative” it cannot use this instrument to “avoid negative”.26 Therefore, our theoretical model captures a wider framework with respect to comparative advertising. Indeed, the model naturally extends to a scenario where any negative message is provided in the advertising message itself (as in the case of comparative advertising), rather than by the media outlet’s reports. That

25Indeed, the secrecy practices in the advertising industries are such that even competitors are unable to observe advertising agreements (see Dukes and Gal-Or, 2003).

26Moreover, as observed by Gambaro and Puglisi (2010) “pieces of news that appear to be “objective” are likely to have a stronger persuasive effect on consumers than proper ads, so that there is a clear incentive to disguise ads as news stories.” (Gambaro and Puglisi, 2010, page 9)
is, a firm with a good quality product may pay a media outlet to broadcast (comparative) negative ads (paying positive to go negative) while a firm with a bad quality product may pay a media outlet to broadcast its own “neutral” ads and not to broadcast the (comparative) negative ads of the good quality firm (paying positive to avoid negative). Finally, while the literature on comparative advertising shows that “a quality disadvantage is necessary for comparative advertising” (Anderson and Renault 2009, page 560), our analysis shows that different editorial contents may arise even in the presence of the same quality among firms. Indeed, a media outlet may choose to disclose only a subset of the negative information available to it.

The next two sections present the formal analysis of the effects of competition among potential advertisers on the equilibrium news reports of the media outlet. As pointed out above, we first characterize the possible equilibria of the bargaining game between the media outlet and producers. Then, we analyze the equilibrium fraction α of informed consumers consistent with such equilibria.

4 Advertisers’ competition and media outlet’s reports

In this section we analyze the bargaining sub-game. Specifically, we discuss the preferences of potential advertisers over news reports and then analyze which signals the media outlet will find optimal to disclose to viewers in equilibrium. In other words, we analyze the equilibrium disclosure strategy of the media outlet for a given fraction of informed consumers (i.e., for a given α). Then, proceeding backwards, in the next section we will analyze the endogenous equilibrium fraction of informed consumers.

In the last stage of the game, informed consumers will only choose products whose expected quality is high enough (i.e., such that $E_p[u(q)|m] \geq u_0$). Hence, the media outlet’s report is going to affect the market share of each producer. Disclosing negative information about firm l’s product will clearly have a negative impact on its market share. At the same time, its competitors may benefit from the disclosure of such negative news depending on the structure of the correlation among the negative shocks in products’ qualities in a specific industry. Intuitively, when the correlation is low or null (i.e., uncorrelated shocks), a firm is likely to gain from bad news about its competitors’ products. Instead, when products’ qualities are highly correlated (e.g., health risks of different tobacco products on consumers’ health) a firm is likely to be hurt by negative news about its competitors’ products. Hence, given the set of signal observed z, the media outlet will anticipate which producers would be willing to pay an ads fee to disclose (pay positive to go negative) or to hide (pay positive to avoid negative) bad news on a given product. Therefore, the media outlet may ask each producer for an ad fee as high as the additional
profit that the producer may earn in the market for informed consumers if the media outlet produces a favorable report (e.g., hides or discloses a given set of signals).27

The following sections develop this basic intuition and provide a formal analysis of the media outlet’s equilibrium news reports within a given competition (i.e., duopoly or an arbitrary number of producers) and correlation (i.e., uncorrelated or correlated qualities) structure of the market of the advertised products. For the sake of clarity, we first provide the basic results for the benchmark case where products are uncorrelated. Then, we present the general propositions for the case where firms face correlated shock in the quality of their products. Without loss of generality, in the following analysis we normalize $u_0 = 1$.

4.1 Benchmark: Uncorrelated products

In order to develop the basic intuition behind the general model, this section focuses on the case where the negative shocks in products’ qualities are uncorrelated (q_l are \textit{i.i.d.}). We first describe the equilibrium in the simplest case where there are only two potential advertisers (i.e., l_1 and l_2) competing in the products market. Then we generalize and prove the result for the case of an arbitrary number of producers.

4.1.1 Duopoly

When products’ qualities are uncorrelated, competing producers always have conflicting preferences over news reports. Suppose, for example, that $z = \emptyset, b)$. Then, l_2 would like the media outlet to not disclose such a negative signal on its product to viewers while l_1 would want the media outlet to disclose it. Hence, the media outlet knows that a “good” quality producer is willing to “pay positive to go negative”. On the other hand, a bad quality producer is willing to “pay positive to avoid negative”. Similarly, if $z = (b, b)$, each producer would like the media outlet to hide any negative information about its own product while disclosing any negative information about the competitor’s product. Therefore, when bargaining over advertising fees, the media outlet will anticipate the presence of these conflicting preferences. The following result characterizes the equilibrium news reports of the media outlet. Its proof follows from the general result given below in Proposition 1.

27As an analogy, this framework could be interpreted as if the media outlet was selling tickets (entry costs) to bad quality firms (i.e. firms whose product the media outlet discovered being of bad quality) in order to access the α-market share of informed consumers. On the other hand, the media outlet could also sell a ticket to “good” quality firms (i.e. firms whose product the media outlet did not find being to be of bad quality) to restrict the bad quality firms to access this α-market share of informed consumers.
Result 1

Let $D^* \leq B$ be the number of bad signals disclosed by the media outlet in equilibrium given its news report m^*. When firms face uncorrelated shock in the quality of their products, for $L = 2$ and $\alpha > 0$, then $D^* = \min\{B, 1\}$ and $\Gamma = \alpha \frac{B}{2}$.

Hence, informed consumers may observe two types of news reports by the media outlet. In the first scenario, the media outlet would not show any negative information about either firm. In this case, informed consumers know that this report is fully truthful since the media outlet simply did not find any negative information about either of them. Alternatively, informed consumers may observe a negative report on one of the two firms’ products. In this second scenario, they would not know whether the media outlet observed negative information about only one or both products. In the first case, such a report would be truthful (and the media outlet was paid by the “good” firm to disclose such signal). Indeed, as specified by our tie-breaking rule, since the “good” and “bad” firms have the same willingness to pay, the media outlet will always prefer to choose the most informative report and thus disclose the bad signal found on one of the products. Instead, when the media outlet finds bad news about both products, it ends up being paid by one of the firms to disclose only the bad signal on its’ rival product. The following section generalizes the above result to the case of an arbitrary number of producers.

4.1.2 Multiple producers

As in the duopoly case studied above, when producers face uncorrelated shocks in their products’ quality, they will end up having conflicting preferences over news reports. Each producer would like the media outlet to hide the negative information (if any) about their own product and to reveal the negative information (if any) about its competitors’ product. Thus, the results of the duopoly case easily extend to the case of an arbitrary number of producers. The proof follows from the general result given below in Proposition 2.

Result 2

Let $D^* \leq B$ be the number of bad signals disclosed by the media outlet in equilibrium given its news report m^*. When firms face uncorrelated shock in the quality of their products, for any $L \geq 2$ and $\alpha > 0$ then $D^* = \min\{B, L - 1\}$ and $\Gamma = \alpha \frac{B}{L}$

The above result generalizes the one obtained for the case with two producers. When not all firms are found to have a bad quality product, the media outlet will always end up being paid by “good” producers to disclose all the information. Instead, when all firms are found to have a bad quality product, the media outlet will “save” just one of them. Indeed, in this case, a truthful report would lead all informed consumers to not
choose any of the products of the L firms and thus the media outlet could never ask any producer for a positive ads fee. Thus, in this case, the media outlet always prefers to hide one bad signal so that one single firm will capture the entire market share of informed consumers. Anticipating this, the media outlet could ask to such firm an advertising fee equal to the profits of the entire α-market share of informed consumers. Moreover, the higher the fraction of firms whose product the media outlet finds to be of bad quality (i.e., B/L), the higher its equilibrium profits. Indeed, the more information the media outlet has available, the higher its bargaining power with potential advertisers.

Now that we have characterized the equilibrium news reports of the media outlet in this benchmark case of uncorrelated products, we may extend the analysis to the general case of correlated products.

4.2 Correlated products

This section analyzes the media outlet’s equilibrium news reports when firms face correlated shocks in the quality of their products. This general correlation structure is meant to capture the possible similarities among products’ characteristics. Different producers may use common inputs in their production and thus a defect in a common input may result in all of them ending up with a bad quality product.\(^{28}\) A complementary interpretation of this correlation is that products may have similar negative externalities on consumers. For example, different tobacco products are likely to create similar health risks for consumers, different cars may produce similar quantities of pollutants and thus have similar effects on global warming and so on. Finally, this correlation may also capture the degree of products differentiation in the advertisers’ industry (see Section 6.1).

As before, we first develop the basic intuition by presenting a formal analysis of the simplest case where there are only two potential advertisers (i.e., l_1 and l_2) competing in the products market. Then, we generalize the result for the case of an arbitrary number of producers.

4.2.1 Duopoly

In order to understand how this case differs from the one of uncorrelated qualities analyzed above, let’s focus again on the case where $z = (\emptyset, b)$. Clearly, regardless of the industry structure, i.e., regardless of the correlation among products qualities, l_2 will always want the media outlet not to report such information to consumers. That is, l_2 would always

\(^{28}\)For example, between 2009 and 2010 the Toyota Aygo, the Citroën C1 and the Peugeot 107 all experienced a defect in their accelerator’s pedal. This common shock was due to the fact that all three cars were produced at a joint venture factory. Source: “Peugeot Citroën joins Toyota and Honda in recall”, \textit{The Times}, February 1, 2010.
be willing to pay an advertising fee to the media outlet in exchange for not reporting negative news about its own product (paying positive to avoid negative). Viceversa, the preferences of l_1 over the media outlet’s report will depend on the industry structure. When the correlation among negative shocks in products’ qualities is low, then l_1 would want the media outlet to publish a negative report on its rival’ product, since this would increase its market share. Indeed, upon receiving negative reports on firm l_2, informed consumers will then choose the product of firm l_1. Thus, exactly as shown in the previous section where the correlation was null, firm l_1 will be willing to pay the media outlet to disclose the negative information about the competitor’s product (paying positive to go negative). Instead, when the correlation between products’ qualities is high, l_1 is likely to be hurt by the publication of negative reports on the product of firm l_2. Indeed, in this case, consumers would infer that firm l_1 is likely to have a bad quality product as well. Thus, when shocks are sufficiently correlated, both producers will share the same preferences over news reports (i.e., both want the media outlet to hide any negative information) regardless of which specific product the media outlet has found negative information about.

Then, the following proposition applies:

Proposition 1 Let $D^* \leq B$ be the number of bad signals disclosed by the media outlet in equilibrium given its news report m^*. Then, for $L = 2$ and $\alpha > 0$ there exists a threshold in the correlation between the negative shocks in products qualities:

$$\bar{\rho} = \frac{2(u_g\nu - 1) + \theta(1 - \nu)}{\nu(2u_g - \theta)}$$

such that:

1. If $\rho \leq \bar{\rho}$, then $D^* = \min\{B, 1\}$ and $\Gamma = \alpha \frac{B}{2}$
2. If $\rho > \bar{\rho}$, then $D^* = 0$ and $\Gamma = \left\{ \begin{array}{ll} \frac{\alpha}{2} & \text{if } B \geq 1 \\ 0 & \text{otherwise} \end{array} \right.$

Therefore, when the correlation between the negative shocks in products’ qualities is low, the intuition and the results remain identical to the ones obtained in the case of no correlation. Indeed, when correlation is sufficiently low, negative information about the product of firm l_2 would not prevent informed consumers from choosing the product of firm l_1. Thus, as in the case of no correlation, firm l_1 has an incentive to “pay positive to go negative” the media outlet. Hence, when the correlation in products’ qualities is low, competing advertisers still have conflicting preferences over news reports.

Instead, when such correlation is high, publishing negative information about firm l_2 will have negative consequence also on firm l_1’s profits. Therefore, when products’ ex-post
qualities are highly correlated, good and bad quality advertisers end up sharing the same preferences over news reports.

Notice also that $\bar{\rho}$ is increasing in u_g, ν and θ. The higher the prior expected value of a random product and the higher the probability of detecting a bad one, the less likely bad news on product l_2 will also negatively affect firm l_1. Hence, the higher u_g, ν and θ, the lower the influence of the correlation on the updated expectations of informed consumers on the quality of firm l_1 product, given the negative information about firm l_2’s product.

Next section shows that in presence of a higher degree of competition in the products market (i.e., $L > 2$), this sharp difference between the media outlet’s optimal disclosure strategy with low and high correlation becomes smoother.

4.2.2 Multiple Producers

This section presents our main results. We generalize the results obtained in the previous section to the case of an arbitrary number of producers. At the same, we generalize the results of section 4.1.2 to the case where firms face correlated shocks in the quality of their products. The following proposition applies.

Proposition 2 Let $D^* \leq B$ be the number of bad signals disclosed by the media outlet in equilibrium given its news report m^*. When firms face correlated shock in the quality of their products, for any $L \geq 2$ and $\alpha > 0$ there exists a threshold in the number of bad signals disclosed by the media outlet:

$$\bar{D} = \sup_{h \in \{0,1,\ldots,L\}} \left\{ \max_{l \in L} \mathbb{E}[u(q_l)|D = h] \geq 1 \right\}$$

(5)

such that $D^* = \min\{B, \bar{D}\}$. Moreover,

1. If $\bar{D} > 0$, $\Gamma = \alpha \frac{B}{L}$

2. If $\bar{D} = 0$, $\Gamma = \begin{cases} \frac{2}{L} & \text{if } B \geq 1 \\ 0 & \text{otherwise} \end{cases}$

Therefore, while in the duopoly case there was a stark difference between the media outlet’s equilibrium report with respect to the different degrees of correlation in products’ qualities (i.e., above or below $\bar{\rho}$), in the presence of more than two producers the media outlet will hide some information (i.e., hide $B - \bar{D}$ bad signals whenever $B > \bar{D}$) and reveal others (i.e., disclose $D = \min\{B, \bar{D}\}$ bad signals on firms’ products). Moreover, the maximum amount of bad signals disclosed by the media outlet in equilibrium, i.e., \bar{D}, depends on the degree of correlation among products’ qualities. In order to assess how the correlation among products’ qualities affects the media outlet’s equilibrium reports, we need to introduce a formal definition which allows to compare the degree of correlation of different discrete probability distributions.
Definition 1 (more correlated d.p.d.) Let P and Q be two discrete probability distributions on L products (with the same expectation $(1 - \nu)$). Moreover, let $1 \leq \bar{D} \leq L - 1$. We define P as more correlated than Q above \bar{D}, if, for every $\bar{D} \leq k \leq L - 1$:

$$ \frac{p(k)}{q(k)} \leq \frac{p(k + 1)}{q(k + 1)} $$

and there is at least one $\bar{D} \leq k \leq L - 1$ for which the above inequality is strict.

The above definition is needed to define a partial ordering over all the possible probability distributions, with the same ν, over the $L \geq 2$ events. In general, as studied in Appendix A, Definition 1 is consistent with a smooth mean–preserving spread, as it spreads more probability weight on the right–tail of the distribution. The following example presents a family of distributions where this definition implies a total ordering.

Example (No defects or i.i.d.) Consider the following distribution: with probability $1 - p_0$ all firms have a good quality product, otherwise each of them has a bad quality product with i.i.d. probability p_b. In this case P is such that $p(0) = (1 - p_0) + p_0(1 - p_b)^L$ and, for $k > 0$, $p(k) = p_0 \binom{L}{k} p_b^k (1 - p_b)^{L-k}$. Moreover ν is such that $p_0 p_b = 1 - \nu$, so that two distributions P and Q have the same ν if and only if $p_0 p_b = q_0 q_b$.

It can easily be checked that:

1. When $L = 2$, the correlation is $\rho = \frac{1 - p_0}{p_0} \frac{1 - \nu}{\nu}$. If P and Q have the same expectation ν, P is more correlated than Q if and only if $p_0 < q_0$, or equivalently $p_b > q_b$.

2. When $L > 2$, if P and Q have the same expectation ν, then:

$$ \frac{p(k)}{q(k)} = \frac{\frac{1 - \nu}{p_b} \binom{L}{k} p_b^k (1 - p_b)^{L-k}}{\frac{1 - \nu}{q_b} \binom{L}{k} q_b^k (1 - q_b)^{L-k}} = \frac{p_b^{k-1} (1 - p_b)^{L-k}}{q_b^{k-1} (1 - q_b)^{L-k}} $$

If $p_b > q_b$, then $\frac{p(k)}{q(k)} < \frac{p(k+1)}{q(k+1)}$ for every $k \geq 1$. It follows also in this case that P is more correlated than Q, above any $k \geq 1$, $k \leq L - 1$, if and only if $p_0 < q_0$, or equivalently $p_b > q_b$.

The following corollary shows that the amount of information that the media outlet may find optimal to hide in equilibrium, is a non-decreasing function of the correlation among products’ qualities.
Corollary 1 Given two discrete probability distribution over the negative shocks in products’ qualities \mathcal{P} and \mathcal{Q}, such that \mathcal{P} is more correlated than \mathcal{Q} above $\bar{D}(\mathcal{P})$, it is always the case that:

$$\bar{D}(\mathcal{P}) \leq \bar{D}(\mathcal{Q})$$

Therefore, the degree of correlation in products’ qualities has a key influence on the accuracy of the media outlet’s reports. The higher this correlation is, the (weakly) lower is the maximum number of bad signal that the media outlet will find optimal to report to informed consumers. Viceversa, the lower this correlation is, the more likely it is that the competition in the market for products will also translate into competition over news contents. As we have discussed before, the competition of potential advertisers over news contents is beneficial for informed consumers since it gives the proper incentives to the media outlet to disclose more information. Instead, a higher correlation is associated with more aligned preferences of potential advertisers over news contents. In turn, these shared preferences lead the media outlet to reduce the amount of information disclosed to informed consumers. Hence, our results provide a microfoundation and an economic rationale behind the assumption of Ellman and Germano (2009) and Germano and Meier (2010) that advertisers share the same preferences for low accuracy of news reports. The tobacco industry, which the two papers use as an archetypal example of negative advertisers’ influence on news accuracy, is clearly a case in point. Arguably, the correlation among products’ qualities in the tobacco industry (i.e., the negative effects on consumers’ health of different tobacco products) is very high. Thus, our model predicts that all tobacco companies would collude to pay the media outlet to hide any possible negative information.

Moreover, the above result linking the correlation in the market for products and the disclosure of information by the media outlet has a clear testable empirical implication. All other things being equal, we should expect media to report more accurate news (e.g., disclose more negative information about products’ defects/issues) on firms belonging to industries whose products’ qualities exhibit a low degree of correlation. Moreover, even within an industry, media should be more likely to report negative news on issues upon which firms have conflicting preferences than on issues where all firms share the same preferences over news reports. For example, in the car industry a firm is likely to benefit from bad news on the quality of its competitor’s product. However, the same firm may instead be hurt from news regarding the effects of car pollution on global warming. Indeed, while everyday we observe negative reports released by media on defects or problems of products of specific car manufacturers, there seems to be much less disclosure regarding the effects of pollution on global warming (Oreskes, 2004; Boykoff and Boykoff, 2004; Boykoff, 2007; Germano and Meier, 2010). Thus, even within an industry, there may be some issues where producers have conflicting preferences over
media reports and others where they share the same preferences.\footnote{For example, a similar logic may apply to the mobile phone industry. That is, while each firm is likely to benefit from bad news on the defects in its rivals’ products, every mobile producer would be negative affected by news on the (eventual) health risks of mobile phone usage.} Hence, empirical studies aiming at testing the influence of advertisers of media contents should take into account that media are more likely to accurately report news on issues where competing producers have conflicting preferences.

Overall, the results suggest that “commercial media bias” represents a serious concern in presence of a high degree of correlation among advertisers’ products. Instead, when advertisers’ products are weakly correlated, “commercial media bias” is endogenously swept away by the advertisers’ competition over news contents. Therefore, media regulators should target their monitoring efforts towards news contents/issues upon which advertisers are likely to share similar preferences.

5 Media outlet’s reports and equilibrium viewership

We can now turn to the analysis of the endogenous media outlet’s viewership (i.e., the equilibrium fraction of informed consumers) given the Nash equilibrium of the bargaining game between the media outlet and potential advertisers characterized in the previous section. Informed consumers update their beliefs about the quality of a product both when they observe news about that product (i.e., $m_l = b$) and when they do not observe any news (i.e., $m_l = \emptyset$).\footnote{See Milgrom (1981) for an analysis of Bayesian updating upon observing “no-news”.} Indeed, informed consumers take into account that two different outcomes may result in the media outlet not reporting any news on product l.

It may be the case that the media outlet did not find any negative information about the advertiser’s product. Or, the media outlet found such negative information but decided to conceal it. Since agents have rational expectations, the equilibrium fraction of informed consumers must be consistent with the equilibrium strategy of the media outlet. The following lemma characterizes the equilibrium values of α for the duopoly case, consistent with the Nash equilibria of the bargaining game specified in Proposition 1.

Lemma 1 Let $L = 2$, then given $\bar{\rho}$ specified in (4):

1. For $\rho \leq \bar{\rho}$, then $\alpha = \frac{u_a}{c} \cdot (1 - \nu) \nu \theta \cdot (1 - \rho)$
2. For $\rho > \bar{\rho}$, then $\alpha = 0$.

Since informed consumers have rational expectations, they know that the media outlet would never disclose any negative information about firms belonging to industries where products’ qualities face highly correlated shocks (i.e., consumers are aware of the...
incentives of the media outlet to please advertisers by hiding any negative information observed). Consumers anticipate that, given $\rho > \bar{\rho}$, the media outlet’s reports would never be informative and thus they will not get informed, i.e., $\alpha = 0$. In turn, this implies that the media outlet ends up earning zero profits, i.e., $\Gamma = 0$. Indeed, firms anticipate that no consumer would find the media outlet’s news report worth spending the opportunity cost to become informed. Thus they do not need to bother paying the media outlet to hide any negative information since none would observe them.\(^{31}\)

Instead, as shown by proposition 1, for any $\rho < \bar{\rho}$ the media outlet chooses the same optimal reporting strategy, i.e., the one adopted in the case of uncorrelated products. Nevertheless, the informativeness of news report is decreasing in ρ. Indeed, when observing the media outlet disclosing a bad signal on either product, informed consumers know that the higher ρ is the more likely it is that the media outlet also observed a bad signal on the other product (i.e., less likely that “no news” on only one of the products is good news on that product). Hence, from the point of view of consumers the value of information is decreasing in the degree of correlation between products. In turn, this implies that the equilibrium fraction of informed consumers (and hence the media outlet’s equilibrium profits) is a decreasing function of ρ. Indeed, when $\rho < \bar{\rho}$, the equilibrium fraction of informed consumers is equivalent to the one that would arise in the uncorrelated case if the probability of detecting a bad quality product was $\hat{\theta} \equiv (1 - \rho)\theta$.

Thus, overall, an increase in ρ may have two different negative effects on the informativeness of the media outlet’s reports. For $\rho = \bar{\rho}$, a marginal increase in ρ leads the media outlet to never report any negative information about firms’ products. Hence, such an increase in products’ correlation leads to a (sharp) decrease in the accuracy of news reports since it changes the media outlet’s optimal reporting strategy. On the other hand, for $\rho < \bar{\rho}$ a marginal increase in ρ does not change the accuracy of the media outlet’s reports since it does not change its optimal reporting strategy. Nevertheless, this change still leads to lower informativeness of news reports since it increases the probability of the media outlet’s hiding a bad signal on one of the firms’ products.\(^{32}\) The following graph illustrates the equilibrium fraction of informed consumers as a function of ν in presence of different degrees of correlation in products’ qualities.

\(^{31}\)Obviously, this is easily generalizable. As pointed out above in section 3, if watching the media outlet also had an entertainment value for consumers, then the lower bound of α would be $\alpha_{\text{min}} > 0$ and then $\Gamma_{\text{min}} > 0$. Nevertheless, informed consumers would still not find the news reports of the media outlet credible and thus they would simply disregard them.

\(^{32}\)Moreover, an increase in ρ has a further negative effect on α. Specifically, even when the media outlet is reporting all its information, i.e., $B_\theta = 1$, when ρ increases “no news” on product l become relatively less “good news” on that product.
As shown by the above graph, the *ex-ante* uncertainty on products’ quality has a non-monotonic effect on α. Specifically, an increase in ν:

1. Always increases the informativeness of news reports. Hence, this effect tends to increase the equilibrium fraction of informed consumers.

2. Always increases the expected value of remaining uninformed. Hence, this effect tends to decrease the equilibrium fraction of informed consumers.

3.a For $\nu \in [0, 0.5)$ it results in an increase in the uncertainty in the quality of the products. In turn, this effect leads to an increase in the equilibrium fraction of informed consumers.

3.b For $\nu \in [0.5, 1]$ it results in a decrease in the uncertainty in the quality of the products. In turn, this effect leads to a decrease in the equilibrium fraction of informed consumers.

More generally, since the equilibrium fraction of informed consumers captures the expected informativeness of the news reports, it is possible to analyze which role the parameters of the model play on such informativeness by studying the comparative statics with respect to α. The following proposition characterizes these comparative statics for the general case of an arbitrary number of firms competing in the market for products.

Proposition 3 For any $L \geq 2$, the equilibrium fraction α of informed consumers is always non-decreasing in u_g, θ and \bar{D}, non-increasing in c and non-monotone in ν. Moreover, whenever $\alpha > 0$, α is strictly increasing in u_g, θ and \bar{D}, and strictly decreasing in c.

Clearly, the higher is the value of a good quality product, the more consumers would find it optimal to become informed before choosing such a product. Similarly, since the expected informativeness of media reports is increasing in the probability of detecting
a bad quality product and also in the amount of information that the media outlet is willing to disclose, the expected fraction of informed consumers is also increasing in \(\theta \) and \(\bar{D} \). In turn, since by Corollary 1, a higher degree of correlation among products’ qualities leads to a (weakly) lower upper bound in the information disclosed by the media outlet, i.e., \(\bar{D} \), a higher degree of correlation is also associated with a (weakly) lower fraction of consumers willing to become informed.

6 Competition in the market for products and news accuracy

This section analyses the role of competition in the market for products on the media outlet’s news reports. Specifically, we explore whether a higher degree of competition in the market for products (i.e., a higher \(L \)) improves the accuracy of the media outlet’s reports. In order to address this issue, we define \(\varphi = \bar{D}/L \) as a measure of the accuracy of news reports. \(\varphi \) represents the maximum fraction of bad quality products that the media outlet is willing to disclose in equilibrium, where \(\varphi \in [0, \frac{L-1}{L}] \). Indeed, in the case of perfectly correlated shocks \(\varphi = 0 \) since \(\bar{D} = 0 \). Instead, in the case of uncorrelated shocks \(\varphi = \frac{(L-1)}{L} \) since \(\bar{D} = L-1 \). Intuitively, by keeping all the other parameters of the model constant, an increase in \(L \) increases the accuracy of news reports if and only if it also leads to a (more than proportional) increase in \(\bar{D} \).

To analyze the effects of a “marginal” increase in competition, we compare the accuracy of news reports in presence of \(L \) and \(L + 1 \) firms. The first (trivial) comparison is the one between a monopoly and a duopoly. Clearly, when there is only one firm in the market for products (and thus only one source of advertising revenues) the media outlet will never disclose any bad information about that firm (i.e., \(\bar{D} = 0 \)). Hence, unless the correlation between the products in the duopoly is too high (i.e., above the \(\bar{\rho} \) defined in (4)), the accuracy of news reports in a duopoly will always be strictly higher than the one in a monopoly. Indeed, as discussed in the previous sections, the competition between advertisers with conflicting preferences over news reports is always beneficial for informed consumers.

More generally, it is immediate to verify that when firms face uncorrelated shocks in the quality of their products, an increase in \(L \) always increases the accuracy of news reports. Therefore, in the case of uncorrelated products, a higher degree of competition in the market for products always has a positive effect on the expected utility of informed consumers through the media information channel. However, while in the uncorrelated case the effect of an increase in competition on accuracy of news is straightforward, when products’ qualities are correlated this relationship becomes more complex. In order to assess this issue it is first necessary to define a d.p.d. \(\mathcal{P}' \) over the \(L + 1 \) products. Hence,
we need to introduce a new distribution over the aggregate negative shocks in products’ qualities. The following definition provides a characterization of P' as an extension of P to $L + 1$ products.

Definition 2 (Extension to $L + 1$ variables) Given a discrete probability distribution P over L products (with expectation $1 - \nu$), P' extends P on $L + 1$ products as follows:

$$
\begin{align*}
p'(0) &= \nu \cdot p(0) \\
p'(I) &= (1 - \nu) \cdot p(I - 1) + \nu \cdot p(I) \quad \text{for} \quad 1 \leq I \leq L \\
p'(L + 1) &= (1 - \nu) \cdot p(L)
\end{align*}
$$

The above characterization of P' ensures a proper comparison between the accuracy in presence of L and $L + 1$ products.33 Specifically, P' satisfies two key conditions:

1. The expected fraction of bad quality products remains constant:

$$
\sum_{i=0}^{L+1} i \cdot p'(i) \cdot \frac{1}{L + 1} = \sum_{i=0}^{L} i \cdot p(i) \cdot \frac{1}{L} = (1 - \nu)
$$

2. P' is not more correlated than P above \bar{D}.34

The first condition ensures that a randomly drawn product has the same probability of experiencing a negative shock in either scenario. Thus, the expected value of being uninformed remains constant when increasing the number of firms competing in the products market. The second condition is necessary to ensure that an increase in L does not translate *per se* to higher incentives for the media outlet to hide negative information since, as pointed out in Corollary 1, a higher degree of correlation leads to a (weakly) lower accuracy of news reports. The following lemma characterizes the condition under which the accuracy of the media outlet’s reports does not decrease when the competition in the market for products increases.

Lemma 2 Let \bar{D}_L be defined as in (5) and $\varphi(L) = \bar{D}_L / L$ be the accuracy of the media outlet’s reports in the presence of L firms, with P being the d.p.d. over the L products’ qualities. If one more producers enters in the market for products with P' (defined by (6)) being the d.p.d. over the $L + 1$ products’ qualities, then $\varphi(L + 1) \geq \varphi(L)$ if and only

33 Notice that P' extends P as if the additional product was independent from the existing L products.
34 See Definition 1 of “more correlated d.p.d.”.

26
if:

\[(1 - \nu)\theta \cdot \Pr(B = \bar{D}_L) \left\{ u_g \frac{E_p[L - \hat{B}|B = \bar{D}_L]}{L - \bar{D}_L} - 1 \right\} \geq \Pr(B \geq \bar{D}_L + 1) \left\{ 1 - u_g \frac{\nu}{L - \bar{D}_L} - u_g \frac{E_p[L - \hat{B}|B \geq \bar{D}_L + 1]}{L - \bar{D}_L} \right\} \]

(7)

The above lemma provides a necessary and sufficient condition to ensure that a “marginal” increase in competition does not decrease the accuracy of news reports. Intuitively, an increase in the number of producers leads to an (at least proportional) increase in \(\bar{D} \) if and only if the maximum amount of bad news that informed consumers would “tolerate” without deciding to not consume any of the products offered by the firms increases (at least proportionally). Therefore, an increase in competition in the market for products translates to higher accuracy of news reports if and only if the negative effect on informed consumers’ beliefs (due to observing an additional bad signal) is offset by the positive effect due to the higher overall level of information. Specifically, \(\bar{D} \) will increase if and only if informed consumers put a higher weight on the expectation that the additional bad news belong to the additional product rather than on the expectation of the bad signal attaining to the \(L \) products. Indeed, as pointed out by the following example, the above condition is not always satisfied. That is, an increase in the competition in the market for products may lead to a decrease in the accuracy of news reports and also in the expected utility of informed consumers.

Example (competition and accuracy) Let \(L = 3 \), \(\theta = 1/2 \) and let \(P \) be such that \(p(1) = 1/2 \), \(p(2) = 1/15 \), \(p(3) = 1/4 \) (i.e., \(\nu \approx 0.54 \)). Then:

\[
\bar{D}_L = \begin{cases}
0 & \text{if } u_g \in (\sim 1.86, \sim 1.89] \\
1 & \text{if } u_g \in (\sim 1.89, 8.5] \\
2 & \text{if } u_g \in (8.5, \infty]
\end{cases}
\]

Now let \(L' = 4 \) and consider the distribution \(P' \) which extends \(P \) as defined by (6). Then:

\[
\bar{D}_{L'} = \begin{cases}
1 & \text{if } u_g \in (\sim 1.86, \sim 2.12] \\
2 & \text{if } u_g \in (\sim 2.12, \sim 2.74] \\
3 & \text{if } u_g \in (\sim 2.74, \infty]
\end{cases}
\]

Hence, for example, given \(u_g = 2 \):

i) \(\varphi(L') = \frac{1}{4} < \varphi(L) = \frac{1}{3} \).

ii) \(E[U^I(L')] \approx 1.257 < E[U^I(L)] \approx 1.261 \).

Therefore, a marginal increase in product market competition may lead to a lower
accuracy of news reports, a lower expected utility of informed consumers and, as a consequence, to a lower equilibrium fraction α of informed consumers (for any value of c).

Therefore, even though we have considered a “marginal” increase in competition by imposing that the extension of P to $L+1$ products does not increase the correlation among the existing products, it may still be the case that this higher degree of competition ends up not being beneficial for informed consumers. Indeed, by extending the distribution of P as if the additional product was independent from the existing L products, we have focused on the most favorable scenario with respect to competition. This is the situation where informed consumers may benefit the most from the positive effects of products market competition passing through the media information channel. Nevertheless, as shown in Lemma 2 and the above example, even in this case an increase in competition in the market for products does not necessarily lead to a higher accuracy of news reports. Indeed, this increase in competition may actually lead to a decrease in the accuracy of news reports and to a lower expected utility of informed consumers. In other words, while more competition among firms with conflicting preferences over news reports is beneficial for informed consumers, this may not be the case when firms share similar preferences over news contents.

6.1 Correlation, competition and news accuracy

In the above analysis, we have separately analyzed the effect of increasing correlation (Corollary 1) and competition (Lemma 2) in order to better disentangle the two effects. However, the degree of correlation in the qualities of firms’ products may also capture the degree of products differentiation (e.g., the higher the products’ differentiation, the lower the correlation among products’ qualities).\(^{35}\) Therefore, since a lower degree of products differentiation is typically associated with fiercer competition, the results of Corollary 1 may also be interpreted in this respect. That is, the accuracy of the media outlet’s reports may be lower the less differentiated the firms’ products are. In other words, keeping constant the degree of competition arising from the number of firms \textit{per se}, the fiercer the competition among firms in the products’ market, the more aligned the preferences over the media outlet’s news report may be. Therefore, a higher degree of competition in the products’ market may translate into a lower accuracy of media reports. Notice that this may represent an additional and different effect with respect to the one arising from an increase in competition due to an increase in the number of firms, which is discussed in Lemma 2 (i.e., increase in competition due to an increase in L).

\(^{35}\)For example, an industry characterized by monopolistic competition may correspond to the case where products’ qualities are \textit{i.i.d.}
To sum up, there may be two different effects of competition on the accuracy of media reports:

1. An increase in competition due to an increase in the number of firms may lead to a lower (expected) accuracy of the media outlet’s reports.

2. A higher degree of competition in the market for products due to a lower degree of products differentiation is associated with a lower (expected) accuracy of the media outlet’s reports (if a lower degree of products differentiation corresponds to a higher degree of correlation in products’ qualities).

Therefore, while our analysis points out that competition among advertisers with conflicting preferences is beneficial for informed consumers and it helps to reduce “commercial media bias”, when advertisers’ products are correlated, a higher degree of competition may actually lead advertisers and the media outlet to behave more “conservatively”. Hence, a higher degree of competition in the market for products may be associated with lower news accuracy and more “commercial media bias”.

7 Robustness

7.1 Media outlet’s private info

In this section we discuss whether relaxing the assumption that the media outlet and producers share the same information (i.e., all observe z) would affect our results on the equilibrium news reports of the media outlet (i.e., accuracy). In other words, when the media outlet has private information, could it earn higher profits by choosing different news reports with respect to the ones characterized in section 4?

Suppose that firm l observes only the signal on its own product, z_l. Two features of the model immediately imply that the media outlet can never benefit from hiding an arbitrary subset of signals from an arbitrary subset of potential advertisers: 1) Information is hard, i.e., the media outlet can only make offers to advertisers contingent on the set of realized signals; 2) In equilibrium the media outlet cannot be paid by two (or more) advertisers who accepted offers involving conflicting messages. That is, in equilibrium the media outlet can only implement contracts that involve positive payments contingent on the message it will actually deliver. In other words, the media outlet can never “fool” advertisers and make them pay for a message that it will not send to its viewers. Therefore, by hiding any information from producers, the media outlet would simply restrict the set of contracts it could offer to them, since such contracts must be contingent on the vector of messages delivered and messages are hard information.

Thus, as shown by the following lemma, the media outlet is never able to earn profits which are higher than the ones it obtains in the case where it shares the same information.
as firms. Hence, the strategy of fully disclosing its signals to potential advertisers always weakly dominates any partial disclosure strategy.

Lemma 3 By hiding any arbitrary subset of signals to producers at the bargaining stage, the media outlet is never able to earn a profit higher than the one it could obtain when revealing all its signals. Hence, disclosing all its signals to producers is a weakly dominant strategy for the media outlet.

The intuition behind this result is simple. The higher the number of bad signals observed by the media outlet, the (weakly) higher the profits it may extract from advertisers. Hence, since the higher the number of bad signal observed, the higher the “bargaining power” of the media outlet with respect to producers, the media outlet always has an incentive to disclose all of its signals to potential advertisers so it can maximize the advertising fees it can impose on them.

7.2 Multiple Media Outlets

This section discusses the robustness of our results in the presence of two media outlets (i.e., $N = 2$). As in Besley and Prat (2006), we assume that both media outlets have the same information (i.e., they both observe z), and that if at least one media outlet has informative news, then all media viewers become informed. That is, if at least one media outlet publishes a negative report on a firm’s product, then every media viewer becomes informed of the bad quality of that product. Notice that if different media outlets were to receive heterogenous information, increasing the number of media outlets would be beneficial *per se*. Hence, by assuming that both media outlets have the same information, it is possible to study whether media pluralism by itself changes the informativeness of news reports. The following proposition provides a generalization of the results obtained in Proposition 1 to the case of multiple media outlets.

Proposition 4 Let $D_i \leq B$ be the number of bad signals disclosed by media outlet i in equilibrium given its news report $m_i, \forall i = 1, 2$. Then, for $L = 2$ and $N = 2$, $\exists \tilde{\rho}$, where $\tilde{\rho}$ is given by (4), such that:

- If $\rho < \tilde{\rho}$, then $D_1 = D_2 = \min \{B, 1\}$ and $\alpha = \frac{\mu}{\ell} \cdot (1 - \nu) \nu \theta \cdot (1 - \rho)$. Moreover:
 1. If $B = 1$, then $\forall i \neq j, \Gamma_i = \alpha B_2; \Gamma_j = 0$
 2. If $B = 2$, then $\Gamma_1 = \Gamma_2 = \frac{\alpha B}{2}$

- If $\rho > \tilde{\rho}$, then $D_1 = D_2 = 0, \alpha = 0$ and $\Gamma_1 = \Gamma_2 = 0$.

36 This scenario is, for example, consistent with the empirical evidence found by Swinnen et al. (2005) regarding the case of the media coverage of the food dioxin crisis in 1999 in Belgium. The authors show that once a media outlet started publishing negative reports on this issue all the others quickly followed.
From the consumers’ perspective, the value of information remains the same as that characterized in the single media outlet case. Indeed, since for consumers the two media outlets are *ex-ante* identical, they all equally share the market for informed consumers. Hence, competition in the market for news does not increase the informativeness of news reports. On the other hand, the expected profits in the products and news markets are different with respect to the single media outlet case. When only one media outlet is present in the market for news, it always has a monopoly power over information and it is always able to extract all the possible profits from advertisers. Instead, introducing competition in the market for news has a positive effect on the profits of “good” producers. A firm producing a good quality product (or whose product media outlets have not discovered to be of bad quality) only needs to pay one of the media outlets to reveal the negative information about its rival’s product. Hence, its bargaining power with respect to the single media outlet case increases: it just needs to pay one media outlet an advertising fee equal to a $\frac{1}{4}$ of the total profits in the α—market share of informed consumers (i.e., the maximum the bad quality firm is able to offer to each of the media outlets). Thus, good quality firms benefit from competition in the news market since “paying positive to go negative” becomes cheaper. *Vice versa*, the expected profits of a media outlet decrease more than proportionally with respect to the case when it did not face any competition in the market for news.

8 Conclusions

Consumers typically watch media for their entertainment and informational value. Such an informational value also involves news on consumer products. Hence, the information supplied by media ultimately affect the purchasing decisions of consumers. Since producers are also potential advertisers, there may be a subtle relationship between the media editorial contents (i.e., news) and advertising. Specifically, advertising fees may represent a form of hidden transfer to induce media to hide negative information about the advertiser’s own product (*paying positive to avoid negative*) or to disclose negative information about the competitors’ products (*paying positive to go negative*).

The results of the analysis show that whether or not advertisers’ pressure on media has negative consequences on the accuracy of media reports ultimately depends on whether the competition in the products’ market also translates into competition over media contents. In turn, the extent of competition over media contents depends on the degree

37Clearly, as shown by Germano and Meier (2010), if media outlets could, instead, increase their audience share by increasing the accuracy of their news reports (i.e., media outlets committing to a given accuracy level), then competition in the market for news may also increase the expected accuracy of news reports. Moreover, if there were a transaction cost between advertisers and media outlets (as in Besley and Prat, 2006), there may be a threshold in the number of media outlets above which firms with a bad quality product would not have enough resources to “silence” all media outlets.
of correlation among the firms’ products. When the correlation in products’ qualities is high, all the firms share the same preferences over media reports (i.e., every firm wants media to refrain from disclosing any negative information about any product since such news would hurt the sales of its own product). Hence, in this case, advertisers compete in the market for products but they do not compete over media reports. Instead, when the correlation is low, firms have conflicting preferences over media contents (i.e., “bad” firms want to pay positive to avoid negative and “good” firms want to pay positive to go negative). Hence, advertisers compete both in the products market and over media contents. Therefore, our results suggest that the media are likely to report more accurate information (i.e., disclose relatively more “bad news”) on products belonging to industries where the correlation among firms’ products is lower.

The analysis also shows that the effect of competition in the market for products on the accuracy of news reports is not univocal. When advertisers’ products are uncorrelated, a higher degree of competition in the market for products is always associated with a higher accuracy of media outlet’s reports. Instead, this is not necessarily true when products are correlated. That is, when potential advertisers have conflicting preferences over news reports, competition is beneficial for informed consumers, but this may not be the case when potential advertisers share similar preferences over news contents.

The results also suggest that empirical studies investigating the link between advertising and news contents should take into account the differences in the degree of correlation in products’ qualities and in the extent of competition among producers across advertisers’ industries.

More generally, the analysis suggests that “commercial media bias” represents a serious concern in the presence of a high degree of correlation among advertisers’ products. On the other hand, when advertisers’ products are weakly correlated, “commercial media bias” is endogenously swept away by the advertisers’ competition over news contents. Therefore, media regulators should target their monitoring efforts towards news contents/issues upon which advertisers are likely to share similar preferences. Finally, the analysis has focused on a symmetric setting to isolate the model from ad-hoc effects. Future research should explore the role of asymmetries among advertisers: exogenous differences in the willingness to pay of different advertisers may have important consequences on the information received by consumers.

References

In this Appendix we include some technical specifications on the assumptions we are making on the equilibrium, and on the partial ordering we use to rank correlation between different probability distributions.

Definition A (Equilibrium of the game) A subgame perfect Bayesian–Nash equilibrium of the game consists of a fraction of informed consumers α^*, a sequence of media outlet’s offers $\{\tau^*_l\}_{l \in L}$, firms decisions $\{a^*_l\}_{l \in L}$ and a media outlet’s news report m^*, such that:

1. Consumers maximize their expected utility given their rational expectations over $\{\tau^*_l\}_{l \in L}$, $\{a^*_l\}_{l \in L}$ and m^*:
 $$\alpha^* = \frac{EP[U^f(m^*)] - \nu \cdot u_g}{c}$$

2. Every producer maximizes its profits given $\{\tau^*_l\}_{l \in L}$:
 $$a^*_l \in \arg\max_{a_l \in A} \Pi_l = S_l(m^*(a_l, a^*_{-l}), \alpha^*) - \tau_l(m^*(a_l, a^*_{-l}), a_l), \forall \alpha^* \geq 0.$$
This is well defined because $S_l(m, \alpha)$ is linear in α, and it is assumed that for $\alpha = 0$ producers behave as if $\alpha > 0$.

3. For every $\alpha^* \geq 0$, the media outlet maximizes its profits given α^* and $\{a_i^*\}_{i \in L}$:

$$\{\{\tau_i^*\}_{i \in L}, m^*\} \in \arg \max_{\tau \in \mathbb{C}, m \in \mathcal{M}} \Gamma(m, \tau, a) = \sum_{i \in L} \tau_i(m, a_i^*)$$

where \mathcal{M} is the set of any m consistent with the information z obtained by the media, i.e. $z(l) = \emptyset \Rightarrow m(l) = \emptyset$ for any firm l.

Notice that, given the common prior beliefs \mathcal{P}, the definition of the equilibrium of the game involves a subgame perfect Bayes–Nash equilibrium since informed consumers are bayesian and update their beliefs on products’ qualities given the news m^* reported by the media outlet. Moreover, in the robustness case discussed in section 7.1, firms update their beliefs given the media outlet’s offers $\{\tau_i^*\}$. However, as shown by Lemma 3, in this case the media outlet has no incentive to hide information from potential advertisers. Thus, even in this case all firms end up observing z. Hence, we can disregard out–of–equilibrium beliefs.

We conclude this appendix with an example and a lemma that are related to Definition 1.

Example (3-pt mean preserving spread) For any $1 \leq \bar{D} \leq L - 1$, such that $q(\bar{D}) > 0$, it is possible to construct P that is more correlated than Q above \bar{D}, applying a 3–pt mean preserving spread, as defined in Rasmussen and Petrakis (1992). We define $p(0) \equiv q(1) + \frac{\bar{D} - 1}{\bar{D}} : q(\bar{D})$, $p(\bar{D}) \equiv 0$, $p(L) \equiv q(L) + \frac{\bar{D}}{\bar{D} - 1} : q(\bar{D})$, while $p(I) \equiv q(I)$ for any other $I \not\in\{1, \bar{D}, L\}$. It is easy to check that P and Q have the same expectation, and that P is more correlated than Q above \bar{D}.

The above example shows that Definition 1 is consistent with a smooth mean–preserving spread, as it spreads more probability weight on the right–tail of the distribution. Finally, we have a lemma.

Lemma A Consider two discrete probability distributions \mathcal{P} and \mathcal{Q}, on L events, such that they have the same expectation ν, such that \mathcal{P} is more correlated than \mathcal{Q} above H. We have that for every $H \leq k \leq L - 1$, and for any function $\phi(I, k)$ from $I, k \in \{H, \ldots, L\}$, $I \geq k$, which is positive valued, the following inequality holds:

$$\sum_{I=1}^{L} I \cdot p(I) \cdot \phi(I, k) \geq \sum_{J=k}^{L} J \cdot q(J) \cdot \phi(J, k).$$

Proof. The inequality is equivalent to

$$\sum_{l=k}^{L} \sum_{j=k}^{L} I p(I) \phi(I, k) q(J) \phi(J, k) \geq \sum_{l=k}^{L} \sum_{j=k}^{L} J p(I) \phi(I, k) q(J) \phi(J, k). \quad (a)$$

We proceed by backward induction on k.

First Step of the Induction: The statement holds with equality if $k = L$.

Induction Hypothesis: Now suppose that the inequality holds for some $H + 1 \leq k + 1 \leq L$, that is

$$\sum_{l=k+1}^{L} \sum_{j=k+1}^{L} I p(I) \phi(I, k + 1) q(J) \phi(J, k + 1) \geq \sum_{l=k+1}^{L} \sum_{j=k+1}^{L} J p(I) \phi(I, k + 1) q(J) \phi(J, k + 1),$$

38This is without loss of generality, because if $\alpha = 0$, every equilibrium will be characterized by the same null transfers.
for any function \(\phi(I, k) \) which is positive valued.

Induction Step: we must prove the result for \(k \). The inequality (a) is equivalent to

\[
\left(\sum_{I=k+1}^{L} \sum_{J=k+1}^{L} IP(I) \phi(I, k)q(J)\phi(J, k) \right) + k \cdot p(k)q(k)\phi(k, k)^2
+ \left(\sum_{I=k+1}^{L} kp(k)\phi(k, k)q(I)\phi(I, k) + IP(I)\phi(I, k)q(I)\phi(k, k) \right)
\geq \left(\sum_{I=k+1}^{L} \sum_{J=k+1}^{L} Jp(I)\phi(I, k)q(J)\phi(J, k) \right) + k \cdot p(k)q(k)\phi(k, k)^2
+ \left(\sum_{I=k+1}^{L} IP(k)\phi(k, k)q(I)\phi(I, k) + kp(I)\phi(I, k)q(k)\phi(k, k) \right) . \tag{b}
\]

The first term in parenthesis in the l.h.s. of the inequality is greater than the first term in parenthesis in the r.h.s., because the induction hypothesis holds for any \(\phi(I, k) \), and we can define a new function \(\phi'(I, k) \) such that \(\phi'(I, k+1) \equiv \phi(I, k) \), for any \(I > k \).

The second term in both sides is the same.

Therefore, the whole inequality in (b) holds if for every \(I \in \{k + 1, \ldots, L\} \) we have

\[
I \left(p(I)\phi(I, k)q(k)\phi(k, k) - p(k)\phi(k, k)q(I)\phi(I, k) \right)
\geq k \left(p(I)\phi(I, k)q(k)\phi(k, k) - p(k)\phi(k, k)q(I)\phi(I, k) \right) .
\]

We have that \(I > k \), and that

\[
p(I)\phi(I, k)q(k)\phi(k, k) \geq p(k)\phi(k, k)q(I)\phi(I, k) ,
\]

because

\[
\frac{p(I)\phi(I, k)q(k)\phi(k, k)}{p(k)\phi(k, k)q(I)\phi(I, k)} = \frac{p(I)q(k)}{p(k)q(I)} \geq 1 ,
\]

as \(P \) is more correlated than \(Q \) above \(H \) and so \(\frac{p(I)}{q(I)} \geq \frac{p(k)}{q(k)} \) for every \(I > k \) (this is just an iterated application of the definition).

This closes the proof by induction and proves the statement. \(\text{Q.E.D.} \)

Appendix B

Proof of Proposition 1.

Let us prove first the uncorrelated case (Result 1) and then we extend to the correlated case.

If negative shocks are uncorrelated and \(\alpha > 0 \), informed consumers will randomly purchase among products without bad news, i.e., \(m_l = \emptyset \), because it is always the case that \(E_P(u(q_l)\mid m_l = \emptyset) \geq nu_g \). Hence, producer \(l \)'s total sales are:

\[
S_l(D) = \frac{(1 - \alpha)}{2} + 1_{m_l=\emptyset} \cdot \frac{\alpha}{2 - D} \tag{c}
\]

where \(1_{m_l=\emptyset} \) is an indicator function. Clearly, such sales depend on the news reported by the media outlet, i.e., \(m \), and therefore, upon \(z \). Let us consider separately each possible signal realization:

i) First, consider \(z_1 = z_2 = \emptyset \), i.e., \(B = 0 \). In this, trivial, case the media outlet cannot
do anything else than reporting $D = 0$ and so, it cannot ask any positive transfer to the
advertisers, e.g., $t_1 = t_2 = 0$.

ii) Then, consider $z_1 = z_2 = b$, i.e., $B = 2$. The media outlet has now a richer space of possible
reports: $\mathcal{M} = \{(\emptyset, \emptyset), (\emptyset, b), (b, \emptyset), (b, b)\}$. Moreover, since the products are uncorrelated
and given the tie-breaking rule, it does not have any incentive to conceal any negative
information about a producer that rejects its own offer. Therefore, producer $l's$ sales are
$(1 - \alpha)/2$, conditional upon rejecting the offer. Hence, each producer will accept any offer
such that:

$$\tau_l(m, a) \leq \frac{\alpha}{2 - D}$$

(d)

Clearly, the media outlet would set the highest possible ad fee which is consistent with
(d), i.e., the inequality is strict. Note that, the media outlet could now either disclose
both signals, earning $t_1 = t_2 = \alpha/2$ from both producers, or just one signal, earning either
$t_1 = \alpha$ and $t_2 = 0$ or viceversa. However, given the tie-breaking rule, the media outlet
prefers the latter option which is the most informative to consumers.

Finally, the contract offered is an equilibrium because it allows the media outlet to earn all
the revenues from the market of informed consumers, i.e., $\Gamma = \alpha$. This clearly represents
an upper bound to all possible media outlet’s profits.

iii) Now consider the case where $z_1 = \emptyset$ and $z_2 = b$ (the case where $z_1 = b$ and $z_2 = \emptyset$ is
clearly symmetric), i.e., $B = 1$. Again, the media outlet may present a contract for the
bad producer such that (d) is strict. Given the bad producer will accept, the best response
for the good producer is to accept any offer such that:

$$\tau_l(m, a) \leq \frac{\alpha}{2 - D}$$

(e)

At equilibrium (e) is strict as well. Therefore, if $D = 0$, the media outlet earns $t_1 = 0$ and
t_2 = \alpha/2, whereas, if $D = 1$, the media outlet earns $t_1 = \alpha/2$ and $t_2 = 0$. Thus, because
of the tie breaking rule, the single bad signal is revealed and just one payment is due. In
this case the media earns $\Gamma = \alpha/2$, which is again an upper bound.

Summing up i), ii) and iii), we obtain the media outlet’s equilibrium reporting strategy in the
uncorrelated case. Specifically, $D^* = \min\{B, 1\}$.

Let us now prove by contradiction that when shocks are correlated the reporting strategy is
different from the one of the uncorrelated shocks case. Suppose that the media outlet were
adopting the same disclosure strategy as in Result 1. Since D is the number of bad signals
disclosed by the media outlet given its message m, we can rewrite the utility functions of the
informed consumers as a function of D. Specifically, conditional upon observing $D = 1$, the
expected utility of an informed consumers is:

$$E[U^I | D = 1] = \max \left\{ u_g \cdot \frac{p(1)}{p(1) + p(2)(2 - \theta)}; u_0 \right\}$$

By using the definition of the coefficient of correlation among two negative shocks, we have that:
$$\nu(1 - \nu)\rho = p(2) - (1 - \nu)^2$$
together with the definition of the mean: $p(1) + 2p(2) = 2(1 - \nu)$, we obtain that a consumer purchase the good if:

$$\rho \leq \bar{\rho} \equiv \frac{2(ug\nu - 1) + \theta(1 - \nu)}{\nu(2ug - \theta)}$$

(f)

Hence, if $\rho > \bar{\rho}$, informed consumers would not purchase any product whenever $D > 0$. Therefore,
if correlation is high, the same disclosure strategy as in Result 1 is not an equilibrium. In

38
In this case, the media outlet will instead hide all signals. Indeed, it may ask a tariff \(t_1 = t_2 = \frac{\alpha}{\lambda} \) to each producer. Thus, there will be two symmetric equilibria where only one of the two producers will accept the media outlet offer and all signals are concealed. Thus, the media outlet’s equilibrium strategy in both cases will be:

\[
D^* = \begin{cases}
\min\{B, 1\} & \text{if } \rho < \bar{\rho} \\
0 & \text{if } \rho \geq \bar{\rho}.
\end{cases}
\]

Q.E.D.

Proof of Proposition 2

Also in this case, let us prove first the uncorrelated case (Result 2) and then we extend to the correlated case.

When shocks are uncorrelated, there are two possible cases:

1. First, suppose that \(B = L \). The media outlet will offer a contract: \(\tau_l(m, a) = 1_{m_l = \emptyset} \cdot \frac{\alpha}{L-D} \). Specifically, this specifies an ad fee, i.e., \(t_l = \frac{\alpha}{L-D} \), to be paid contingent on \(a \) concealing the bad news about firm \(l \)'s product and \(b \) disclosing bad news about other \(D \) products. It is a (weakly) dominant strategy for any producer to accept the offer. And so, the media outlet will receive the same payment for every \(D \in \{0, L-1\} \) disclosed. However, given the tie-breaking rule, the media outlet will choose \(D^* = L-1 \).

2. Second, suppose that \(B < L \). Bad producers will still accept the above offer, whereas good producers are asked \(\tau_l(m, a) = \frac{\alpha}{L-D} - \frac{\alpha}{L} \); that is, an ad fee is paid contingent on the number \(D \) of bad signals disclosed. In this case, the media outlet may earn an equal transfer from both either “good” or “bad” firms and so, it will choose \(D^* = B \).

Summing up 1) and 2) we obtain the stated result.

Let’s now consider the case of correlated shocks. As a first step, suppose that the optimal disclosure strategy for the media outlet is: \(D^* = \min\{B; \hat{D}\} \) with \(\hat{D} > 0 \). Clearly, \(\hat{D} \) must be such that each informed consumers is willing to choose one of the products offered by firms not subject to such bad news. i.e., such that \(m_l = \emptyset \). Thereby the gross profits are as in equation (c). Note that this will be true for all \(D \leq \hat{D} \).

Let us consider separately each possible signals realization:

1. If \(B \leq \hat{D} \), then all results in the uncorrelated case extend to this case and the media outlet reveals \(D = B \) earning \(\Gamma = B \frac{\alpha}{L} \).

2. If \(B > \hat{D} \), then \(B - \hat{D} \) bad signals would be concealed. In this case, to maximize ad fees, the media outlet may offer a contract to each of the bad quality producers offering to conceal the signal about their own quality, i.e., \(\tau_l(m, a) = 1_{m_l = \emptyset} \cdot \frac{\alpha}{L-D} \). Whereas, the offer to good quality producers may be: \(\tau_l(m, a) = \frac{\alpha}{L-D} - \frac{\alpha}{L} \). Clearly, if \(\hat{D} = L-1 \), all producers are of bad quality and they will compete to be the only firm in the market of informed consumers. In all other cases, however, if a bad producer rejects the offer, it is still possible that its own signal is concealed because some good producer and / or a less than \(\hat{D} \) number of other bad producers have accepted the offer from the media outlet. However, the media outlet may (credibly) publicly announce that, when it is indifferent in terms of ad fees between reporting bad signals about two firms, e.g., \(l \) and \(l' \), the media outlet will report always the signal concerning firm \(l > l' \). At this point, it becomes a unique equilibrium for the last firm in this “list” to accept the offer.
If not, the signal is revealed with probability one. Then, given that this firm accepted the offer, the second producer from the end will accept as well, and by induction, this process iterates to all the other bad quality firms. Finally, given that all bad firms accepted the offer, the good firms will accept as well. Therefore, the media outlet receives a sum of transfers from the set of good firms along with the transfers from the bad producers who accepted the offer and whose signal has been concealed, and this sum must be equal to the transfers that the media outlet could obtain from all bad firms by hiding all signals:

$$\frac{\alpha(L - \hat{D})}{L - \hat{D}} - \frac{\alpha(L - B)}{L} \geq \frac{\alpha B_\theta}{L}$$

$$\frac{\alpha B_\theta}{L} \geq \frac{\alpha B_\theta}{L}$$

At this point, the media outlet earns $$\Gamma = \frac{\alpha B}{L}$$ and reveals $$\hat{D}^* = \hat{D}$$. Hence to complete the proof for the case $$\bar{D} > 0$$, we must specify a value of $$\bar{D}$$, denoted $$\bar{D}$$, which maximizes the media outlet’s profits. Therefore, at equilibrium, it must be true that $$\bar{D}$$ is defined as in the proposition. Finally, when $$\bar{D} = 0$$ and the media outlet observes $$B \geq 1$$, it may ask to every firm an ads fee $$\tau_l(m, a) = \alpha$$ contingent on reporting $$D^* = 0$$. Thus, there will be $$L$$ symmetric equilibria where only one of the $$L$$ producers will accept the media outlet offer. Specifically, the media outlet will earn $$\alpha$$ and its equilibrium strategy will be $$D^* = 0$$. Q.E.D.

Proof of Corollary 1

By the definition of $$\bar{D} = \bar{D}(\mathcal{P})$$ we have that

$$u_g \cdot \frac{L - E_P[\hat{B} | \bar{D}(\mathcal{P})]}{L - \bar{D}(\mathcal{P})} \geq \nu \cdot u_g$$

Therefore, a necessary condition to have $$\bar{D}(\mathcal{Q}) > \bar{D}$$ is that:

$$\frac{L - E_P[B | \bar{D}]}{L - \bar{D}} > \frac{L - E_Q[B | \bar{D}]}{L - \bar{D}}$$

which is equivalent to:

$$E_P[B | B \geq \bar{D}] < E_Q[B | B \geq \bar{D}]$$

Then, we can apply Lemma A in Appendix A, labelling $$\phi(I, k) = \sum_{i=k}^I (\theta)^{i-k}$$ which is positive valued, and $$H = \bar{D}$$. Hence, it follows immediately that the above inequality is always verified when $$\mathcal{P}$$ is more correlated than $$\mathcal{Q}$$ above $$\bar{D}$$. Q.E.D.

Proof of Lemma 1

Let’s start with the case where $$\rho = 0$$. Then, the expected utility of an informed consumers who accessed the media outlet’s report depends on $$D^*$$. This can be either

$$E[U^I | D^* = 1] = u_g \cdot \frac{\Pr(\hat{B} = 1 \cap B \geq 1)}{\Pr(B \geq 1)}$$

or:

$$E[U^I | D^* = 0] = u_g \cdot \frac{\Pr(\hat{B} = 0 \cap B = 0)}{\Pr(B = 0)} + u_g \cdot \frac{\Pr(\hat{B} = 1 \cap B = 0)}{\Pr(B = 0)}$$

Because of independence, we have: $$p(0) = \nu^2$$, $$p(1) = 2\nu(1 - \nu)$$. Thus, the ex ante expected
value from being informed is:

\[E[U^I] = u_g \left[\nu^2 + \nu(1 - \nu)(1 + \theta) \right] \]

Finally, the equilibrium fraction of informed consumers is:

\[\alpha = \frac{E[U^I] - E[U^U]}{c} = \frac{u_g \cdot \nu(1 - \nu)\theta}{c} \]

Now we can generalize the above. For \(\rho \leq \bar{\rho} \), the \textit{ex ante} expected utility of being informed for consumers:

\[E[U^I] = u_g \cdot \left[p(0) + p(1) \frac{1 + \theta}{2} \right] = u_g \cdot \left[1 - p(1) \frac{1 - \theta - p(2)}{2} \right] \]

where \(\frac{p(1)}{2} = (1 - \nu) - p(2) \) and \(p(2) = \rho \cdot \nu(1 - \nu) + (1 - \nu)^2 \). Hence:

\[E[U^I] = u_g \cdot \left[1 - (1 - \nu)(1 - \theta) - \rho \cdot \nu(1 - \nu)\theta - (1 - \nu)^2 \right] = u_g \cdot \left[1 - (1 - \nu)[1 + \theta(1 - \nu(1 - \rho))] \right] \]

Finally, the equilibrium fraction of viewers is:

\[\alpha = \frac{u_g}{c} \cdot (1 - \nu)\nu\theta \cdot (1 - \rho) \] \hspace{1cm} (h)

Instead, clearly for \(\rho > \bar{\rho} \), \(\alpha = 0 \). \hspace{1cm} \textbf{Q.E.D.}

\textbf{Proof of Proposition 3}

First of all, we need to derive the equilibrium fraction of informed consumers for the case of an arbitrary number of firms, i.e., \(L \geq 2 \). Let’s start with the uncorrelated case. A viewer’s expected value from being informed is:

\[E[U^I] = u_g \cdot \max \{ \Pr(q_l = q | z_l = \emptyset) \cdot \Pr(B < L), \nu \} \]

\[= u_g \cdot \Pr(q_l = q | z_l = \emptyset) \cdot \Pr(B < L) \]

\[= u_g \cdot \nu \cdot \frac{1}{1 - \theta(1 - \nu)} \cdot (1 - (1 - \nu)^L \theta^L) \]

Thus, the equilibrium fraction of viewers is:

\[\alpha = \nu u_g \cdot \frac{\theta(1 - \nu)(1 - (1 - \nu)^{L-1}\theta^{L-1})}{1 - \theta(1 - \nu)} \]

\[= \nu u_g \cdot \sum_{l=1}^{L-1} (1 - \nu)^l \theta^l \]
In the correlated case, the expected utility from being informed is:

\[
E[U^I] = u_g \cdot \max \left\{ \sum_{B=0}^{D-1} \Pr(q_B = g|B) \cdot \Pr(B) + u_g \cdot \Pr(q_B = g|\bar{B}) \cdot \Pr(B \geq \bar{B}), \nu \right\}
\]

\[
= u_g \cdot \max \left\{ \left[\sum_{B=0}^{D-1} \sum_{l=0}^{L} p(l) \cdot \left(\frac{l}{B} \right) \theta^B (1 - \theta)^{l-B} \cdot \frac{L-l}{L-B} \right] + \sum_{l=0}^{D} p(l) \cdot \left[\sum_{j=0}^{D} \binom{D}{j} \theta^j (1 - \theta)^{D-j} \cdot \frac{L-l}{L-\bar{D}} \right], \nu \right\}
\]

hence

\[
\alpha = \frac{u_g}{c} \max \left\{ \left[\sum_{B=0}^{D-1} \sum_{l=0}^{L} p(l) \cdot \phi(l; B, \theta) \cdot \frac{L-l}{L-B} + \sum_{l=0}^{D} p(l) \cdot \sum_{j=0}^{D} \phi(l; j, \theta) \cdot \frac{L-l}{L-\bar{D}} - \nu \right], 0 \right\}
\]

where \(\phi(l; B, \theta) = \binom{D}{l} \theta^B (1 - \theta)^{l-B} \) and \(\phi(l; j, \theta) = \sum_{j=0}^{D} \binom{D}{j} \theta^j (1 - \theta)^{D-j} \).

Let’s now turn to the comparative statics. It is immediate to verify that \(\alpha \), when positive, is always increasing in \(u_g \), decreasing in \(c \) and non-monotone in \(\nu \). It is also immediate to verify that for any \(L = 2 \), \(\alpha \), when positive, is increasing in \(\theta \) and decreasing in \(\rho \). Hence, we only need to prove that for \(L \geq 2 \): \(\alpha \) is increasing in \(\bar{D} \) and increasing in \(\theta \). For \(L \geq 2 \), if \(\alpha \) is greater than 0, it is:

\[
\alpha_{(>0)} = \frac{u_g}{c} \cdot \sum_{k=0}^{D-1} \frac{\sum_{i=k}^{L-1} (L-i) \cdot p(i) \cdot \Pr(B = k|i)}{L-k} + \frac{u_g}{c} \cdot \sum_{i=D}^{L-1} \frac{\sum_{i=D}^{L-1} (L-i) \cdot p(i) \cdot \Pr(B \geq \bar{D} | i)}{(L-\bar{D})}
\]

1. The fraction of viewers is increasing in \(\bar{D} \).

To show that (2) is increasing in \(\bar{D} \), let us consider a shift from \(\bar{D} = H \) to \(\bar{D}' = H + 1 \), whereby \(\alpha_{(>0)} \) will increase if

\[
\frac{L - \sum_{i=H}^{L} i \cdot p(i) \cdot \frac{\Pr(B = H|i)}{\Pr(B = \bar{H})}}{L - H} \geq \frac{L - \sum_{i=H}^{L} i \cdot p(i) \cdot \frac{\Pr(B \geq H|i)}{\Pr(B \geq \bar{H})}}{L - \bar{H}}
\]

\[
\sum_{i=H}^{L} i \cdot p(i) \cdot \frac{\Pr(B = H|i)}{\Pr(B = \bar{H})} \leq \sum_{i=H}^{L} i \cdot p(i) \cdot \frac{\Pr(B \geq H|i)}{\Pr(B \geq \bar{H})}.
\]

To show that this inequality must hold, note that the right hand side equals

\[
\sum_{i=H}^{L} i \cdot p(i) \cdot \frac{\Pr(B \geq H|i)}{\Pr(B \geq \bar{H})} \equiv x
\]

\[
\sum_{i=H}^{L} i \cdot p(i) \cdot \frac{\Pr(B = H|i)}{\Pr(B = \bar{H})} \equiv y
\]

and therefore, since \(\frac{x+y}{x+y} \leq \frac{x}{y} \), it must be that

\[
\frac{X}{Y} \leq \frac{X+x}{Y+y}
\]

which completes the proof.
2. The fraction of viewers is non-decreasing in θ.

As a first step, it is obvious that α, when positive, is increasing in θ given \bar{D}. However, the reporting strategy of the media could change with an improved ability to gather bad signals. Here we show that \bar{D} is increasing in θ as well. Finally, because $\alpha > 0$ is increasing in \bar{D} as well, we obtain the result of interest.

Note that, at the margin between $\bar{D} = H$ and $\bar{D}' = H + 1$, we have:

$$\sum_{i=H}^{L} (L - i - \frac{(L - H)}{u_g}) p(i) \Pr(B \geq H|i) = 0$$

Moreover, because $\Pr(B \geq H|i)$ is increasing in θ and faster for higher values of i, an increase in θ will put more weight on the positive values of the right hand side of the equation, i.e., $i > \frac{L(u_g - 1) - H}{u_g}$. But then, for the equation to hold, it must be reduced the number of positive terms in the summation, i.e., $\bar{D} = H$ should move to $\bar{D}' = H + 1$.

Q.E.D.

Proof of Lemma 2

Recall that over L products, if the equilibrium threshold in the number of bad signals disclosed is \bar{D}_L, then it must be true that:

$$u_g \cdot \sum_{i=\bar{D}_L}^{L} (L - i)p(i) \cdot \Pr(B \geq \bar{D}_L|i) \geq (L - \bar{D}_L) \sum_{i=\bar{D}_L}^{L} p(i) \cdot \Pr(B \geq \bar{D}_L|i)$$ (l)

and

$$u_g \sum_{i=\bar{D}_L+1}^{L} (L - i)p(i) \Pr(\bar{D}_L + 1|i) < (L - \bar{D}_L - 1) \sum_{i=\bar{D}_L+1}^{L} p(i) \Pr(\bar{D}_L + 1|i)$$ (m)

Note that the above conditions imply

$$u_g \sum_{i=\bar{D}_L}^{L} (L - i)p(i) \cdot \Pr(B = \bar{D}_L|i) + u_g \sum_{i=\bar{D}_L+1}^{L} (L - i)p(i) \cdot \Pr(B \geq \bar{D}_L + 1|i) \geq$$

$$\equiv X$$

$$(L - \bar{D}_L)[\sum_{i=\bar{D}_L}^{L} p(i) \cdot \Pr(B = \bar{D}_L|i) + \sum_{i=\bar{D}_L+1}^{L} p(i) \cdot \Pr(B \geq \bar{D}_L + 1|i)]$$

$$\equiv Y$$

By rearranging and combining the two, we obtain:

$$u_g \cdot \frac{X + x}{Y + y} \geq (L - \bar{D}_L) > 1 + u_g \frac{X}{Y}$$ (n)

Then, if we extend to the distribution P', the measure of accuracy increases, i.e., $\varphi(L + 1) \geq$
\(\varphi(L) \), if and only if the new threshold \(\bar{D}_{L+1} \geq \bar{D}_{L} + 1 \). Hence, it must be that \[u_g \cdot \sum_{i=\bar{D}_L}^{L+1} (L+1-i)p'(i) \cdot \Pr(B \geq \bar{D}_L + 1|i) \geq (L - \bar{D}_L) \sum_{i=\bar{D}_L}^{L+1} p'(i) \cdot \Pr(B \geq \bar{D}_L + 1|i) \quad (o) \]

At this point, we can rewrite the l.h.s. of (o) as follows:

\[u_g \nu \sum_{D_L+1}^{L} (L-i)p(i) \Pr(\bar{D}_L + 1|i) + u_g \nu \sum_{D_L+1}^{L} p(i) \Pr(\bar{D}_L + 1|i) + \]

\[+ (1 - \nu)\theta \cdot u_g \sum_{D_L}^{L} (L-i)p(i) \Pr(\bar{D}_L|i) + (1 - \nu)(1 - \theta) \cdot u_g \sum_{D_L+1}^{L} (L-i)p(i) \Pr(\bar{D}_L + 1|i) \equiv X + X \]

whereas the r.h.s. becomes:

\[(L - \bar{D}_L)\nu \sum_{D_L+1}^{L} p(i) \Pr(\bar{D}_L + 1|i) + (L - \bar{D}_L)(1 - \nu)\theta \sum_{D_L}^{L} p(i) \Pr(\bar{D}_L|i) + \]

\[+ (L - \bar{D}_L)(1 - \nu)(1 - \theta) \sum_{D_L+1}^{L} p(i) \Pr(\bar{D}_L + 1|i) \equiv Y + Y \]

By using again condition (n), we obtain equation (7). Q.E.D.

Proof of Lemma 3

As shown in Proposition 2, when the media outlet observes \(B = L \), it will always earn \(\Gamma = \alpha \). This is clearly the upper-bound of the maximum profits that the media outlet may extract from producers. Hence, there is no loss of generality in in assuming that the all firms observe \(z \) (or equivalently, the media outlet discloses \(z \) to all firms). Suppose instead that \(B < L \). Let’s suppose that in this case the media outlet decides to not disclose \(z \) to a subset of firms. Let’s consider first the case where products are i.i.d. Since each firm knows the signal on its own product, i.e., each knows whether there are bad news about its own product or not, if a “good” firm rejects any possible contract offered by the media outlet, it will always end up earning at least \(\alpha/L \). Therefore, regardless of which signals it decides to disclose to firms, the maximum ads fee that a media outlet may ask to a “good” firm will be \(\tau \) (in exchange for revealing \(D \) bad signals) such that:

\[\Pi(D) - \tau \geq \alpha/L \quad (p) \]

This implies that the media outlet may earn at most:

\[\Gamma \leq \alpha - (L - B)\frac{\alpha}{L} = \frac{B}{L}\alpha \quad (q) \]

which corresponds exactly to the media outlet’s profits in the case where the media outlet and all firms observe \(z \). Hence again, there is no loss of generality in assuming that the all firms observe \(z \) (or equivalently, the media outlet discloses \(z \) to all firms). Let’s now generalize the above reasoning to the correlated case. If products are correlated, it might be the case that, depending upon the degree of correlation, the media outlet may want to hide information about
the actual number of “bad” firms to induce “good” firms to pay higher ads fees. Specifically, in principle, the media outlet may threaten good firms to reveal $B > D$ if they do not pay an ads fee higher than, for example, α/L. That is, they may threaten good firms to reveal enough bad news to induce informed consumers to not buy any product. However, this is clearly a non-credible threat. Indeed, as long as the media outlet may renegotiate its contracts before sending a message to its viewers, it will never have an incentive to make such a report since it will always better off by renegotiating the contract and reveal only D bad signals. Hence, “good” firms anticipate this and thus they will always reject any contract not satisfying ((p)). Therefore, the upper bound on the profits that the media outlet may earn by hiding a set of bad signals to producers is always equivalent to the equilibrium profits earned by the media outlet under our assumption that the all firms observe z (or equivalently, the media outlet discloses z to all firms).

Proof of Proposition 4

By paying the opportunity cost of accessing information, every media viewer has access to the same vector of messages about products’ quality, i.e. $m_i = m \forall i$. Obviously, for $\rho > \bar{\rho}$ (where $\bar{\rho}$ is defined as in (4)), no media outlet will ever be paid by an advertiser to disclose any negative information. That is, for any $\alpha > 0$, both media outlets will be paid by (at least) one of the firm to hide any negative information. In turn, this implies that the media outlets’ reports will never be informative. Hence $\alpha = 0$. Let’s now analyze the case where $\rho \leq \bar{\rho}$. First, suppose that $B = 1$. That is, $z_1 = b, z_2 = \emptyset$. In order to avoid having informed consumers becoming informed of its bad quality product, l_1 has to pay a positive ads fee to both media outlets. Moreover, the maximum profits that firm l_1 may earn in the α market-share of informed consumers is $\alpha/2$ (since l_1 has to compete with the “good” quality firm l_2). Hence, from the media outlets’ perspective, the most profitable contract that may offer to l_1 is $(t_1^i = \frac{\alpha}{4}; m_i = (\emptyset, \emptyset)) \forall i = 1, 2$. On the other hand, l_2 does not need to pay both media outlets to disclose $z_i = b$. Hence, each media outlet competes with the other to be the one paid by l_2 to disclose $z_i = b$. That is, by assuming that the two media outlets compete à la Bertrand in the ads fees asked to l_2, the will end up both offering to firm l_2 a contract $(t_i^i = \frac{\alpha}{4}; m_i = (b, \emptyset)) \forall i = 1, 2$ (i.e., asking an ads fee equal to the maximum that l_1 would be willing to pay to each of them). Thus, l_2 will accept this offer from one of the media outlets who will then earn $\Gamma_i = \frac{\alpha}{4}$ (since given our tie-breaking rule, this media outlet prefers to be paid by the “good” firm and disclose the signal rather than being paid by the “bad” firm and hide it). Hence, the other media outlet will end up not earning anything since firm l_1 anticipates that all informed consumers will anyway observe $m_1 = b$. Thus, given the tie-breaking rule, this media outlet will disclose the bad signal on firm l_1 as well. That is, $D_1 = D_2 = 1$. Now, let’s focus on the case where $B = 2$. That is, $z_1 = z_2 = b$. Clearly, the two media outlets revealing different signals cannot be an equilibrium since both firms won’t be willing to pay any ads fee in this case. Instead, if the two media outlets either conceal all signals or reveal the same bad signal while hiding the other, they would each earn half of the profits in the α-market of informed consumers. Again, using the tie-breaking rule, the two media outlet will both prefer to hide the same bad signal and reveal the other one. That is, both media outlets earn $\Gamma_i = \frac{\alpha}{2} \forall i = 1, 2$ from the firm whose signal has been concealed (and zero from the other one). That is, $D_1 = D_2 = 1$. **Q.E.D.**